版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.通过随机询问110名性别不同的大学生是否爱好体育,得到如下的列联表:由公式算得:K2=≈7.8.附表:参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好体育运动与性别有关”B.有99%以上的把握认为“爱好体育运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好体育运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好体育运动与性别无关”2.已知集合,,则()A. B. C. D.3.在等差数列{an}中,,角α顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点(a2,a1+a3),则cos2α=()A. B. C. D.4.下列点不在直线(t为参数)上的是()A.(-1,2) B.(2,-1)C.(3,-2) D.(-3,2)5.已知复数满足(为虚数单位),则()A. B. C. D.6.已知集合A=xy=x-A.0,3 B.(0,3) C.3,+∞ D.0,+∞7.全国高中联赛设有数学、物理、化学、生物、信息5个学科,3名同学欲报名参赛,每人必选且只能选择一个学科参加竞赛,则不同的报名种数是()A. B. C. D.8.在四边形中,如果,,那么四边形的形状是()A.矩形 B.菱形 C.正方形 D.直角梯形9.空气质量指数是一种反映和评价空气质量的方法,指数与空气质量对应如下表所示:0~5051~100101~150151~200201~300300以上空气质量优良轻度污染中度污染重度污染严重污染如图是某城市2018年12月全月的指数变化统计图.根据统计图判断,下列结论正确的是()A.整体上看,这个月的空气质量越来越差B.整体上看,前半月的空气质量好于后半月的空气质量C.从数据看,前半月的方差大于后半月的方差D.从数据看,前半月的平均值小于后半月的平均值10.执行如图所示的程序框图,则程序输出的结果为()A. B. C. D.11.学校新入职的5名教师要参加由市教育局组织的暑期3期上岗培训,每人只参加其中1期培训,每期至多派2人,由于时间上的冲突,甲教师不能参加第一期培训,则学校不同的选派方法有()A.种 B.种 C.种 D.种12.4名同学报名参加两个课外活动小组,每名同学限报其中的一个小组,则不同的报名方法共有()A.4种 B.16种 C.64种 D.256种二、填空题:本题共4小题,每小题5分,共20分。13.若(其中i为虚数单位),则z的虚部是________.14.已知函数,则当函数恰有两个不同的零点时,实数的取值范围是______.15.已知奇函数且,为的导函数,当时,,且,则不等式的解集为_____.16.在复数范围内,方程的根为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合,,.(1)求;(2)若“”是“”的必要不充分条件,求实数a的取值范围.18.(12分)已知命题:实数满足(其中),命题:实数满足(1)若,且与都为真命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.19.(12分)已知.(1)求证:恒成立;(2)试求的单调区间;(3)若,,且,其中,求证:恒成立.20.(12分)已知数列各项均为正数,满足.(1)求,,的值;(2)猜想数列的通项公式,并用数学归纳法证明你的结论.21.(12分)已知:(n∈N)的展开式中第五项的系数与第三项的系数的比是10:1.(1)求展开式中各项系数的和;(2)求展开式中含的项.22.(10分)已知,.(1)若且的最小值为1,求的值;(2)不等式的解集为,不等式的解集为,,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
,则有99%以上的把握认为“爱好体育运动与性别有关”.本题选择A选项.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.2、C【解析】
先求解绝对值不等式得到集合A,然后直接利用交集运算可得答案。【详解】解:因为,所以,得,所以集合,又因为,所以,故选C.【点睛】本题主要考查了绝对值不等式及交集运算,较基础.3、A【解析】
利用等差数列的知识可求的值,然后利用的公式可求.【详解】由等差数列{an}的性质可知,所以,所以.故选:A.【点睛】本题主要考查等差数列的性质和三角函数求值,注意齐次式的转化,侧重考查数学运算的核心素养.4、D【解析】
先求出直线l的普通方程,再把点的坐标代入检验,满足则在直线l上,否则不在.【详解】直线l的普通方程为x+y-1=0,因此点(-3,2)的坐标不适合方程x+y-1=0.故答案为D【点睛】(1)本题主要考查参数方程和普通方程的互化,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)参数方程消参常用的方法有三种:加减消参、代入消参、恒等式消参法.5、C【解析】
整理得到,根据模长的运算可求得结果.【详解】由得:本题正确选项:【点睛】本题考查向量模长的求解,属于基础题.6、B【解析】
先分别化简集合A,B,再利用集合补集交集运算求解即可【详解】A=xy=x-B=xx≥3=[3,+∞)∪(-∞,-3]故选:B【点睛】本题考查集合的运算,解绝对值不等式,准确计算是关键,是基础题7、C【解析】分析:利用分布计数乘法原理解答即可.详解:全国高中联赛设有数学、物理、化学、生物、信息5个学科,3名同学欲报名参赛,每人必选且只能选择一个学科参加竞赛,则每位同学都可以从5科中任选一科,由乘法原理,可得不同的报名种数是故选C.点睛:本题考查分布计数乘法原理,属基础题.8、A【解析】
由可判断出四边形为平行四边形,由可得出,由此判断出四边形的形状.【详解】,所以,四边形为平行四边形,由可得出,因此,平行四边形为矩形,故选A.【点睛】本题考查利用向量关系判断四边形的形状,判断时要将向量关系转化为线线关系,考查转化与化归思想,同时也考查了推理能力,属于中等题.9、C【解析】
根据题意可得,AQI指数越高,空气质量越差;数据波动越大,方差就越大,由此逐项判断,即可得出结果.【详解】从整体上看,这个月AQI数据越来越低,故空气质量越来越好;故A,B不正确;从AQI数据来看,前半个月数据波动较大,后半个月数据波动小,比较稳定,因此前半个月的方差大于后半个月的方差,所以C正确;从AQI数据来看,前半个月数据大于后半个月数据,因此前半个月平均值大于后半个月平均值,故D不正确.故选C.【点睛】本题主要考查样本的均值与方差,熟记方差与均值的意义即可,属于基础题型.10、C【解析】依次运行如图给出的程序,可得;,所以输出的的值构成周期为4的数列.因此当时,.故程序输出的结果为.选C.11、B【解析】
由题意可知这是一个分类计数问题.一类是:第一期培训派1人;另一类是第一期培训派2人,分别求出每类的选派方法,最后根据分类计数原理,求出学校不同的选派方法的种数.【详解】解:第一期培训派1人时,有种方法,第一期培训派2人时,有种方法,故学校不同的选派方法有,故选B.【点睛】本题考查了分类计数原理,读懂题意是解题的关键,考查了分类讨论思想.12、B【解析】根据题意,每个同学可以在两个课外活动小组中任选1个,即有2种选法,则4名同学一共有种选法;故选B.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】
直接根据虚部定义即可求出.【详解】解:z=﹣2+3i(其中i为虚数单位),则z的虚部是3,故答案为:3【点睛】本题考查了虚数的概念,属于基础题.14、【解析】
由题方程恰有两个不同的实数根,得与有2个交点,利用数形结合得a的不等式求解即可【详解】由题可知方程恰有两个不同的实数根,所以与有2个交点,因为表示直线的斜率,当时,,设切点坐标为,,所以切线方程为,而切线过原点,所以,,,所以直线的斜率为,直线与平行,所以直线的斜率为,所以实数的取值范围是.故答案为【点睛】本题考查函数与方程的零点,考查数形结合思想,考查切线方程,准确转化题意是关键,是中档题,注意临界位置的开闭,是易错题15、【解析】
构造函数,,根据条件可知,当时,,,根据单调性可得时,则有;当时,同理进行讨论可得.【详解】由题构造函数,求导得,当时,,所以在上递增,因为,所以,则有时,那么此时;时,那么此时;当时,为奇函数,则是偶函数,根据对称性,时,又因,故当时,;综上的解集为.【点睛】本题考查求不等式解集,运用了构造新函数的方法,根据讨论新函数的单调性求原函数的解集,有一定难度.16、【解析】
根据复数范围求根公式求解【详解】因为,所以方程的根为故答案为:【点睛】本题考查复数范围解实系数一元二次方程,考查基本分析求解能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解析】分析:(1)先求出A,B集合的解集,A集合求定义,B集合解不等式即可,然后由交集定义即可得结论;(2)若“”是“”的必要不充分条件,说明且,然后根据集合关系求解.详解:(1),.则(2),因为“”是“”的必要不充分条件,所以且.由,得,解得.经检验,当时,成立,故实数的取值范围是.点睛:考查定义域,解不等式,交集的定义以及必要不充分条件,正确求解集合,缕清集合间的基本关系是解题关键,属于基础题.18、(1);(2).【解析】
记命题:,命题:(1)当时,求出,,根据与均为真命题,即可求出的范围;(2)求出,,通过是的必要不充分条件,得出,建立不等式组,求解即可.【详解】记命题:,命题:(1)当时,,,与均为真命题,则,的取值范围是.(2),,是的必要不充分条件,集合,,解得,综上所述,的取值范围是.【点睛】1.命题真假的判断(1)真命题的判断方法:真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确地逻辑推理的一个过程,判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.(2)假命题的判断方法:通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法.(3)一些命题的真假也可以依据客观事实作出判断.2.从逻辑关系上看,若,但,则是的充分不必要条件;若,但,则是的必要不充分条件;若,且,则是的充要条件;若,且,则是的既不充分也不必要条件.19、(1)证明见解析;(2)单调递增区间为,无单调递减区间。(3)证明见解析【解析】
(1)构造函数,利用导数求出函数的最小值,利用来证明所证不等式成立;(2)先解等式可得出函数的定义域,求出该函数的导数,利用(1)中的结论得出在定义域内恒成立,由此可得出函数的单调区间;(3)证法一:利用分析法得出要证,即证,利用数学归纳法和单调性证明出对任意的恒成立,再利用(1)中的不等式即可得证;证法二:利用数学归纳法证明,先验证当时,不等式成立,即,再假设当时不等式成立,即,利用函数的单调性得出,由归纳原理证明所证不等式成立.【详解】(1)令,则,由得,由得.函数在上单调递减,在上单调递增,,即恒成立;(2)由得或,函数的定义域为,因为,由(1)可知当时,恒成立,且,.函数单调递增区间为,,无单调递减区间;(3)证法一:,要证,即证,即证,即证.先证对任意,,即,即.构造函数,其中,则,则函数在上单调递增,,所以,对任意的,,即,.下面证明对任意的,.,.假设当时,,则当时,.由上可知,对任意的,.由(1)可知,当时,,,,因此,对任意的,;证法二:数学归纳法①当时,,,,,即成立;②假设当时结论成立,即成立.由(2)知,函数在上单调递增,,又,,,当时结论成立综合①②,恒成立.【点睛】本题考查利用导数证明不等式以及利用导数求函数的单调区间,同时也考查了利用数学归纳法证明不等式,证明时应充分利用导数分析函数的单调性,考查逻辑推理能力,属于难题.20、(1),,;(2)猜想:;证明见解析.【解析】
(1)分别代入,根据,解方程可求得结果;(2)猜想,验证时成立;假设时成立,则时,利用假设可证得结论成立,从而证得结果.【详解】(1)当时,,又当时,,解得:当时,,解得:(2)猜想:证明:(1)当时,由(1)可知结论成立;(2)假设当时,结论成立,即成立,则当时,由与得:又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国双氰胺行业发展环境分析及项目可行性研究报告
- 2024-2030年中国冷轧极薄行业产量预测及投资规模分析报告版
- 2024-2030年中国冶炼锑融资商业计划书
- 2024年全年白酒供货及销售协议
- 2024年字画装裱技术转让协议
- 2024年大连联合体云计算服务合同
- 2023年银川科技学院思政教师招聘考试真题
- 2023年彭泽县部分县直事业单位选调工作人员考试真题
- 2023年吉林农业大学招聘工作人员考试真题
- 2023年安徽菱安医疗器械有限公司招聘考试真题
- 中药传统技能大赛(高职组)考试题库(浓缩500题)
- 疏浚与吹填技术
- 红十字救护员知识考试复习题库200题(含答案)
- 井冈山斗争和井冈山精神教学课件
- 儿科急危重症护理常规
- 大学校园危机氛围评估与分析
- 用数对表示点的位置
- 力矩扳手使用方法培训
- 义务教育学校均衡发展调查问卷
- 结构化面试经典100题及答案
- 万科物业岗位说明书2
评论
0/150
提交评论