




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数(,)的部分图象如图所示,则的值分别是()A. B. C. D.2.已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是()A. B.C. D.3.函数的图象是()A. B.C. D.4.点M的极坐标(4,A.(4,π3) B.(45.下列等式中,错误的是()A. B.C. D.6.中国古代数学的瑰宝——《九章算术》中涉及到一种非常独特的几何体——鳖擩,它是指四面皆为直角三角形的四面体.现有四面体为一个鳖擩,已知平面,,若该鳖擩的每个顶点都在球的表面上,则球的表面积为()A. B. C. D.7.平面上有个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成块区域,有,,,则().A. B.C. D.8.用,,,,这个数字组成没有重复数字的三位数,其中偶数共有()A.个 B.个 C.个 D.个9.已知一组样本点,其中.根据最小二乘法求得的回归方程是,则下列说法正确的是()A.若所有样本点都在上,则变量间的相关系数为1B.至少有一个样本点落在回归直线上C.对所有的预报变量,的值一定与有误差D.若斜率,则变量与正相关10.函数f(x)=,则不等式f(x)>2的解集为()A. B.(,-2)∪(,2)C.(1,2)∪(,+∞) D.(,+∞)11.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,每天的正点率服从正态分布,且,则()A.0.96 B.0.97 C.0.98 D.0.9912.在中,,BC边上的高等于,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知可导函数,函数满足,若函数恰有个零点,则所有这些零点之和为__________.14.的展开式中,的系数为__________.(用数字作答)15.若,则____.16.若随机变量的分布列如表所示,则______.01Pa三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知(1)求及的值;(2)求证:(),并求的值.(3)求的值.18.(12分)已知函数f(x)=2ln(1)当a=2时,求f(x)的图像在x=1处的切线方程;(2)若函数g(x)=f(x)-ax+m在[1e,e]19.(12分)已知,设命题:函数在上是增函数;命题:关于的方程无实根.若“且”为假,“或”为真,求实数的取值范围.20.(12分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线:,直线:.(1)求曲线和直线的直角坐标方程;(2)设点的直角坐标为,直线与曲线相交于两点,求的值.21.(12分)已知的展开式前三项中的系数成等差数列.(1)求的值和展开式系数的和;(2)求展开式中所有的有理项.22.(10分)已知函数.(1)若,求函数的极值;(2)当时,判断函数在区间上零点的个数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
利用,求出,再利用,求出即可【详解】,,,则有,代入得,则有,,,又,故答案选A【点睛】本题考查三角函数的图像问题,依次求出和即可,属于简单题2、A【解析】试题分析:因为与正相关,排除选项C、D,又因为线性回归方程恒过样本点的中心,故排除选项B;故选A.考点:线性回归直线.3、A【解析】
根据已知中函数的解析式,利用导数法分析出函数的单调性及极值,比照四个答案函数的图象,可得答案.【详解】∵,∴,令得;当时,,即函数在内单调递减,可排除B,D;又时,,排除C,故选A.【点睛】本题考查的知识点是函数的图象,分析出函数的单调性是解答的关键,属于中档题.4、C【解析】
在点M极径不变,在极角的基础上加上π,可得出与点M关于极点对称的点的一个极坐标。【详解】设点M关于极点的对称点为M',则OM'所以点M'的一个极坐标为(4,7π6)【点睛】本题考查点的极坐标,考查具备对称性的两点极坐标之间的关系,把握极径与极角之间的关系,是解本题的关键,属于基础题。5、C【解析】分析:计算每一选项的左右两边,检查它们是否相等.详解:通过计算得到选项A,B,D的左右两边都是相等的.对于选项C,,所以选项C是错误的.故答案为C.点睛:本题主要考查排列组合数的计算,意在考查学生对这些基础知识的掌握水平和基本计算能力.6、B【解析】分析:把此四面体放入长方体中,BC,CD,AB刚好是长方体的长、宽、高,算出长方体体对角线即可.详解:把此四面体放入长方体中,BC,CD,AB刚好是长方体的长、宽、高,则,,故.故选:B.点睛:本题主要考查了转化与化归思想的运用.7、B【解析】
分析可得平面内有个圆时,它们将平面分成块,再添加第个圆时,因为每两个都相交于两点,每三个都无公共点,故会增加个圆.再求和即可.【详解】由题,添加第个圆时,因为每两个都相交于两点,每三个都无公共点,故会增加个圆.又,故.即.累加可得.故选:B【点睛】本题主要考查了根据数列的递推关系求解通项公式的方法,需要画图分析进行理解.或直接计算等利用排除法判断.属于中档题.8、B【解析】
利用分类计数原理,个位数字为时有;个位数字为或时均为,求和即可.【详解】由已知得:个位数字为的偶数有,个位数字为的偶数为,个位数字为的偶数有,所以符合条件的偶数共有.故选:B【点睛】本题考查了分类计数运算、排列、组合,属于基础题.9、D【解析】分析:样本点均在直线上,则变量间的相关系数,A错误;样本点可能都不在直线上,B错误;样本点可能在直线上,即预报变量对应的估计值可能与可以相等,C错误;相关系数与符号相同D正确.详解:选项A:所有样本点都在,则变量间的相关系数,相关系数可以为,故A错误.选项B:回归直线必过样本中心点,但样本点可能都不在回归直线上,故B错误.选项C:样本点可能在直线上,即可以存在预报变量对应的估计值与没有误差,故C错误.选项D:相关系数与符号相同,若斜率,则,样本点分布从左至右上升,变量与正相关,故D正确.点睛:本题考查线性回归分析的相关系数、样本点、回归直线、样本中心点等基本数据,基本概念的准确把握是解题关键.10、C【解析】当时,有,又因为,所以为增函数,则有,故有;当时,有,因为是增函数,所以有,解得,故有.综上.故选C11、D【解析】
根据正态分布的对称性,求得指定区间的概率.【详解】由于,故,故选D.【点睛】本小题主要考查正态分布的对称性,考查正态分布指定区间的概率的求法,属于基础题.12、C【解析】试题分析:设,故选C.考点:解三角形.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据为奇函数得到关于对称,,关于对称,所以关于对称,计算得到答案.【详解】函数为奇函数关于对称函数满足关于对称关于对称恰有个零点所有这些零点之和为:故答案为:【点睛】本题考查了函数的中心对称,找出中心对称点是解题的关键.14、1【解析】
写出二项展开式的通项公式,令的指数为2,可求得项是第几项,从而求得系数.【详解】展开式通项为,令,则,∴的系数为.故答案为1.【点睛】本题考查二项式定理,考查二项展开式通项公式.解题时二项展开式的通项公式,然后令的指数为所求项的指数,从而可求得,得出结论.15、【解析】
通过,即可求出的值,通过,即可求出的值,最终可求出的值.【详解】令,可得令,可得【点睛】本题通过赋值法来研究二项展开式系数的和,是一道基础题.16、【解析】
先由分布列,根据概率的性质求出,再求出期望,根据方差的计算公式,即可得出结果.【详解】由分布列可得:,解得,所以,因此,所以.故答案为:.【点睛】本题主要考查求离散型随机变量的方差,熟记计算公式即可,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析;(3).【解析】
(1)用赋值法可求解,令可求得,令可求得.(2)左边用阶乘展开可证.再由己证式结合裂项求和,可求解(3)法一:先证公式再用公式化简可求值.法二:将两边求导,再赋值x=1和x=-1可求解.【详解】(1)当时,(*)在(*)中,令得在(*)中,令得,所以(2)证明:因为,由二项式定理可得所以因为,所以(3)法一:由(2)知因为,所以+则,所以法二:将两边求导,得令得;①令得.②①②得解得,所以.【点睛】本题考查二项式定理中的赋值法求值问题,这是解决与二项式定理展开式中系数求和中的常用方法.18、(1);(2).【解析】试题分析:(1)求函数的导数,利用导数的几何意义即可求的图象在处的切线方程;(2)利用导数求出函数的在上的极值和最值,即可得到结论.试题解析:(1)当时,,,切点坐标为,切线的斜率,则切线方程为,即.(2),则.∵,∴当时,.当时,;当时,.故在处取得极大值.又,,,则,∴在上的最小值是.在上有两个零点的条件是,解得,∴实数的取值范围是.考点:利用导数求闭区间上函数的最值.19、【解析】
先求命题和命题为真时的范围,若“且”为假,“或”为真,则命题与命题一真一假,分类讨论真假与真假时的范围,再取并集即可.【详解】解:命题:在R上单调递增,,命题:关于的方程无实根,且,,解得命题且为假,或为真,命题与一真一假,①真假,则②真假,则所以的取值范围是【点睛】本题考查指数函数的单调性、一元二次方程根与判别式的关系,简单逻辑的判断方法,考查了推理能力与计算能力.20、(1),;(2)17【解析】
(1)将直线的极坐标方程先利用两角和的正弦公式展开,然后利用代入直线和曲线的极坐标方程,即可得出直线和曲线的普通方程;(2)由直线的普通方程得出该直线的倾斜角为,将直线的方程表示为参数方程(为参数),并将直线的参数方程与曲线的普通方程联立,得到关于的二次方程,列出韦达定理,然后代入可得出答案.【详解】(1)由曲线:得直角坐标方程为,即的直角坐标方程为:.由直线:展开的,即.(2)由(1)得直线的倾斜角为.所以的参数方程为(为参数),代入曲线得:.设交点所对应的参数分别为,则.【点睛】本题考查极坐标方程与普通方程之间的转化,以及直线参数方程的几何意义的应用,对于直线与二次曲线的综合问题,常用的方法就是将直线的参数方程与二次曲线的普通方程联立,利用韦达定理以及的几何意义求解.21、(1);(2),,.【解析】
(1)展开式的通项公式为,则前3项的系数分别为1,,,成等差,即可列式求解.(2)由(1)知,则,对r赋值,即可求出所有的有理项.【详解】(1)根据题意,()n的展开式的通项为Tr+1=∁nr()n﹣r()r,其系数为∁nr,则前3项的系数分别为1,,,成等差,∴,解可得:或,又由,则,在中,令可得:.(2)由(1)的结论,,则的展开式的通项为,当时,有,当时,有,当时,有;则展开式中所有的有理项为.【点睛】本题主要考查二项式定理的应用,通项公式,求展开式中某项的系数,熟练掌握展开式的通项公式是解题的关键,属基础题.22、(1)详见解析;(2)详见解析.【解析】
试题分析:(1)求导数得,又,所以,由此可得函数的单调性,进而可求得极值;(2)由,得.因此分和两种情况判断函数的单调性,然后根据零点存在定理判断函数零点的个数.试题解析:(1)∵,∴,因为,所以,当x变化时,的变化情况如下表:100递增极大值递减极小值递增由表可得当时,有极大值,且极大值为,当时,有极小值,且极小值为.(2)由(1)得.∵,∴.①当时,在上单调递增,在上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子银行业务知识题库
- 小学食品安全教育教案
- 第十章中国地理及典型区域的可持续发展
- 《2025环球调研联盟加盟合同书》
- 2025短期用工临时合同
- 2025航空货物运输合同管理规范
- 2025合同纠纷解决求助
- 2025成都市房屋租赁合同范本
- 2024北京丰台区高一(下)期中数学(A卷)及答案
- 人教版生物七年级上册3.2.3开花和结果 教学设计
- 新音乐初放 学堂乐歌说课课件
- 对外汉语教学法智慧树知到答案章节测试2023年西北师范大学
- 乐泰胶用户手册
- 社会工作行政教案
- 通力电梯ctp-10.65s2a kce控制系统
- 课件:国产C919大飞机
- 反应釜泄漏事故应急处置卡
- GB/T 701-2008低碳钢热轧圆盘条
- GB 9706.19-2000医用电气设备第2部分:内窥镜设备安全专用要求
- 遵义会议介绍及历史意义模板课件
- 中图版八年级下册地理《第三节-欧洲西部》(一等奖课件)-
评论
0/150
提交评论