版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数与一元二次方程经典教学案+典型例题二次函数与一元二次方程教学案二次函数与一元二次方程之间的联系1.二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数:①当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.②当时,图象与轴只有一个交点;③当时,图象与轴没有交点.当时,图象落在轴的上方,无论为任何实数,都有;当时,图象落在轴的下方,无论为任何实数,都有.2.抛物线的图象与轴一定相交,交点坐标为,;3.二次函数常用解题方法总结:⑴求二次函数的图象与轴的交点坐标,需转化为一元二次方程;例:二次函数y=x2-3x+2与x轴有无交点?若有,请说出交点坐标;若没有,请说明理由:⑵根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;⑶二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.总结:⑴一元二次方程的实数根就是对应的二次函数二次函数的解析式.【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式。由于并未说明该方程是否是一元二次方程,所以需要讨论M=0和M≠0两种情况,然后利用根的判别式去判断。第二问的第一小问考关于Y轴对称的二次函数的性质,即一次项系数为0,然后求得解析式。第二问加入了一个一次函数,证明因变量的大小关系,直接相减即可。事实上这个一次函数恰好是抛物线的一条切线,只有一个公共点(1,0)。根据这个信息,第三问的函数如果要取不等式等号,也必须过该点。于是通过代点,将用只含a的表达式表示出来,再利用,构建两个不等式,最终分析出a为何值时不等式取等号,于是可以得出结果.【解析】解:(1)分两种情况:当时,原方程化为,解得,(不要遗漏)∴当,原方程有实数根.当时,原方程为关于的一元二次方程,∵.∴原方程有两个实数根.(如果上面的方程不是完全平方式该怎样办?再来一次根的判定,让判别式小于0就可以了,不过中考如果不是压轴题基本判别式都会是完全平方式,大家注意就是了)综上所述,取任何实数时,方程总有实数根.(2)①∵关于的二次函数的图象关于轴对称,∴.(关于Y轴对称的二次函数一次项系数一定为0)∴.∴抛物线的解析式为.②∵,(判断大小直接做差)∴(当且仅当时,等号成立).(3)由②知,当时,.∴、的图象都经过.(很重要,要对那个等号有敏锐的感觉)∵对于的同一个值,,∴的图象必经过.又∵经过,∴.(巧妙的将表达式化成两点式,避免繁琐计算)设.∵对于的同一个值,这三个函数所对应的函数值均成立,∴,∴.又根据、的图象可得,∴.(a>0时,顶点纵坐标就是函数的最小值)∴.∴.而.只有,解得.∴抛物线的解析式为.【例2】关于的一元二次方程.(1)当为何值时,方程有两个不相等的实数根;(2)点是抛物线上的点,求抛物线的解析式;(3)在(2)的条件下,若点与点关于抛物线的对称轴对称,是否存在与抛物线只交于点的直线,若存在,请求出直线的解析式;若不存在,请说明理由. 【思路分析】第一问判别式依然要注意二次项系数不为零这一条件。第二问给点求解析式,比较简单。值得关注的是第三问,要注意如果有一次函数和二次函数只有一个交点,则需要设直线y=kx+b以后联立,新得到的一元二次方程的根的判别式是否为零,但是这样还不够,因为y=kx+b的形式并未包括斜率不存在即垂直于x轴的直线,恰恰这种直线也是和抛物线仅有一个交点,所以需要分情况讨论,不要遗漏任何一种可能.【解析】:(1)由题意得解得解得当且时,方程有两个不相等的实数根.(2)由题意得解得(舍)(始终牢记二次项系数不为0)(3)抛物线的对称轴是由题意得(关于对称轴对称的点的性质要掌握)与抛物线有且只有一个交点(这种情况考试中容易遗漏)另设过点的直线()把代入,得,整理得有且只有一个交点,解得综上,与抛物线有且只有一个交点的直线的解析式有,【例3】已知P()和Q(1,)是抛物线上的两点.(1)求的值;(2)判断关于的一元二次方程=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线的图象向上平移(是正整数)个单位,使平移后的图象与轴无交点,求的最小值.【例4】已知关于的一元二次方程有实数根,为正整数.(1)求的值;(2)当此方程有两个非零的整数根时,将关于的二次函数的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线与此图象有两个公共点时,的取值范围.【思路分析】去年中考原题,相信有些同学已经做过了.第一问自不必说,判别式大于0加上k为正整数的条件求k很简单.第二问要分情况讨论当k取何值时方程有整数根,一个个代进去看就是了,平移倒是不难,向下平移就是整个表达式减去8.但是注意第三问,函数关于对称轴的翻折,旋转问题也是比较容易在中考中出现的问题,一定要熟练掌握关于对称轴翻折之后函数哪些地方发生了变化,哪些地方没有变.然后利用画图解决问题.解:(1)由题意得,.∴.∵为正整数,∴.(2)当时,方程有一个根为零;当时,方程无整数根;当时,方程有两个非零的整数根.综上所述,和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州电力职业技术学院《Python编程原理》2023-2024学年第一学期期末试卷
- 贵阳幼儿师范高等专科学校《制冷原理与低温工程》2023-2024学年第一学期期末试卷
- 2025青海省建筑安全员B证(项目经理)考试题库
- 2025重庆建筑安全员B证考试题库及答案
- 贵阳康养职业大学《建筑工程识图综合实训》2023-2024学年第一学期期末试卷
- 广州中医药大学《插画创作》2023-2024学年第一学期期末试卷
- 2025年云南建筑安全员-B证考试题库附答案
- 广州医科大学《高频电子电路》2023-2024学年第一学期期末试卷
- 2025海南省安全员-B证考试题库附答案
- 2025云南省安全员-B证考试题库及答案
- 管理科学技术名词
- 医美整形BOTOX除皱抗衰专场活动规划方案
- 基于单片机的飞机发动机转速在线检测系统
- GB 38262-2019客车内饰材料的燃烧特性
- GB 16844-1997普通照明用自镇流灯的安全要求
- 2021-2022学年云南省怒江州民族中等专业学校三校生教育技能专业 试题期中考(教育类含答案)
- DB11-T 493.3-2022道路交通管理设施设置规范 第3部分:道路交通信号灯
- 供热企业安全风险隐患辨识清单
- 大数据平台及风险预警系统采购项目需求说明书天津滨海农村商业银行【模板】
- 清华抬头信纸
- 八年级心理健康教育《自控力——成功的标尺》课件
评论
0/150
提交评论