控制系统仿真与CAD课程设计报告_第1页
控制系统仿真与CAD课程设计报告_第2页
控制系统仿真与CAD课程设计报告_第3页
控制系统仿真与CAD课程设计报告_第4页
控制系统仿真与CAD课程设计报告_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

限制系统仿真和CAD课程设计学院:物流工程学院专业:测控技术和仪器班级:测控102姓名:杨红霞学号:201010233037指导老师:兰莹完成日期:201

目的和任务协作《限制系统仿真和CAD》课程的理论教学,通过课程设计教学环节,使学生驾驭当前流行的演算式MATLAB语言的基本学问,学会运用MATLAB语言进行限制系统仿真和协助设计的基本技能,有效地提高学生试验动手实力。一、基本要求:1、利用MATLAB供应的基本工具,敏捷地编制和开发程序,开创新的应用;2、娴熟地驾驭各种模型之间的转换,系统的时域、频域分析及根轨迹绘制;3、娴熟运用SIMULINK对系统进行仿真;4、驾驭PID限制器参数的设计。二、设计要求1、编制相应的程序,并绘制相应的曲线;2、对设计结果进行分析;3、撰写和打印设计报告(包括程序、结果分析、仿真结构框图、结果曲线)。三、设计课题设计一:二阶弹簧—阻尼系统的PID限制器设计及其参数整定考虑弹簧-阻尼系统如图1所示,其被控对象为二阶环节,传递函数G(S)如下,参数为M=1kg,b=2N.s/m,k=25N/m,F(S)=1。设计要求:限制器为P限制器时,变更比例系数大小,分析其对系统性能的影响并绘制相应曲线。限制器为PI限制器时,变更积分时间常数大小,分析其对系统性能的影响并绘制相应曲线。(例如当kp=50时,变更积分时间常数)设计PID限制器,选定合适的限制器参数,使闭环系统阶跃响应曲线的超调量σ%<20%,过渡过程时间Ts<2s,并绘制相应曲线。图1弹簧-阻尼系统示意图弹簧-阻尼系统的微分方程和传递函数为:图2闭环限制系统结构图附:P限制器的传递函数为:PI限制器的传递函数为:PID限制器的传递函数为:(一)设计P限制器,变更比例系数大小,分析其对系统性能的影响并绘制相应曲线。以下为所做的设计以及运行结果,KP取了不同的值,通过运用sim函数进行仿真,并得出超调量MP,过渡过程时间Ts的大小,通过分析所得出的结果,多次变更KP的大小直到符合题目的要求,使稳态误差等都达到要求。仿真运行程序forKp=[200,400,800]t=[0:0.01:6];[t,x,y]=sim('yhx',6);holdonplot(t,y);N=length(t);yss=y(N);%yss:稳态值holdon[ymax,i]=max(y);mp=(ymax-yss)*100/yss,%计算超调量mpi=N;whileabs(y(i)-yss)/yss<=0.02i=i-1;endTs=t(i),%计算过渡过程时间gtext(num2str(Kp));end仿真框图仿真运行结果变更比例系数kp大小,得如下结果,通过以下数据以及得出的曲线可分析其对系统性能的影响Kp=200mp=75.3359Ts=3.7962Kp=400mp=84.7526Ts=3.8317Kp=800mp=88.0528Ts=4.5685仿真运行曲线5、运行结果分析依据试验要求设计了一个P限制器,和Gs等构成闭环限制系统结构。由以上的运行结果以及曲线可以看出随Kp增大,超调量mp是渐渐变大的,Ti也是渐渐变大的,而且总是达不到稳态误差很小很小,因此得出以下结论:随着Kp值的增大,系统的超调量变大,调整时间变长,振荡次数也增多了。Kp值越大,系统的稳态误差就越小,调整应精度越高,但是系统的波动明显变多了,稳定性变差,但是系统响应变快了。随着比例系数女kp的增大并不能消退稳态误差,只能减小稳态误差。(二)设计PI限制器,变更积分时间常数大小,分析其对系统性能的影响并绘制相应曲线。以下为设计出的仿真程序等,运用sim函数进行仿真,编写程序使KP=50,变更KI的大小,来进行分析,直到符合题目的要求,使运行出的结果稳态误差基本很小即可,假如达不到,就要重新设定KI的大小,进行多次试验,选出如下符合要求的KI的值,程序中都有所体现。仿真运行程序forKi=[30,50,80]t=[0:0.01:10];[t,x,y]=sim('yhxx',10);holdonplot(t,y);N=length(t);%yss:稳态值yss=y(N);holdon[ymax,i]=max(y);mp=(ymax-yss)*100/yss,%计算超调量mpi=N;whileabs(y(i)-yss)/yss<=0.02i=i-1;endTs=t(i),%计算过渡过程时间end仿真框图3、仿真运行结果当Kp=50时,变更积分时间常数ki的大小,由以下的结果以及曲线可分析其对系统性能的影响ki=30mp=21.4633Ts=6.5686Ki=50mp=26.7424Ts=5.1127Ki=80mp=31.0229Ts=7.33754、仿真运行曲线:5、运行结果分析Kp=50时,随着ki值的增大,系统的超调量变大,系统响应时间出现了波动。ki越大,积分速度越快,积分作用就越强,响应时间变快,但系统振荡次数就较多。PI限制可以消退系统的稳态误差,提高系统的误差度。在积分限制中,限制器的输出和输入误差信号的积分成正比关系。为了消退稳态误差,在限制器中必需引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动限制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)限制器,可以使系统在进入稳态后基本无稳态误差。这是比上一个只有比例限制器的一个进步的地方。(三)设计一PID限制器,选定合适的限制器参数,使闭环系统阶跃响应曲线的超调量σ%<20%,过渡过程时间Ts<2s,并绘制相应曲线。以下为所设计的程序,仿真等,变更kp,ki,kd的值得出闭环阶跃响应的超调量和过渡过程时间,通过多次试验,得到的kp取20,ki取65,kd取9时运行出的结果是满意题目要求的:1、仿真运行程序[t,x,y]=sim('yhxxx');plot(t,y);N=length(t);yss=y(N);%yss:稳态值[ymax,i]=max(y);mp=(ymax-yss)*100/yss,%计算超调量mpi=N;whileabs(y(i)-yss)/yss<=0.02i=i-1;endTs=t(i),%计算过渡过程时间2、仿真框图3、仿真运行结果经过多次试验,当Kp=20,ki=65,pd=9满意使闭环系统的阶跃响应曲线的超调量σ%<20%,过渡过程时间ts<2s,结果如下:mp=1.1367Ts=0.8945从结果可知超调量mp%<20%,过渡过程时间Ts<2s满意设计要求.4、仿真运行曲线:5、运行结果分析及设计小结把比例微分积分结合起来进行限制能够更好的达到我们想要的结果,PID参数的整定就是合理的选取PID三个参数。从系统的稳定性、响应速度、超调量和稳态误差等方面来考虑问题,每个参数都有自己的作用,比如比例调整的作用是能够成比例地反映系统的偏差信号,系统一旦出现了偏差,比例调整马上产生和其成比例的调整作用,以减小偏差。随着Kp增大,系统的稳态误差减小,但是系统简单产生超调,并且加大Kp只能减小稳态误差,却不能消退稳态误差,显著特点就是有差调整。然后就是微分调整的作用是消退系统的稳态误差,提高系统的误差度,它的特点就是误差调整。微分调整作用是改善系统的动态性能,可以削减超调,削减调整时间。总之比例积分微分限制作用是相互关联的,结合起来用效果会更好。设计二:二阶系统串联校正装置的设计和分析设某被控系统的传递函数G(s)如下:设计要求:选用合适的方法设计一个串联校正装置K(s),使闭环系统的阶跃响应曲线超调量,过渡过程时间,开环比例系数,并分析串联校正装置中增益、极点和零点对系统性能的影响。提示:可采纳根轨迹校正工具进行串联校正MATLAB供应了一个协助设计闭环系统根轨迹的仿真软件Rltool,可以用来进行根轨迹校正。在commandwindow下键入>>rltool,进入设计环境。设计思路方法依据题目要求采纳matlab中供应的一个协助设计闭环系统根轨迹的仿真软件Rltool,来进行根轨迹校正。打开matlab,在commandwindow下键入>>rltool,进入设计环境。依据设计要求:开环比例系数即取k=40,传递函数二、设计步骤1、打开matlab,在commandwindow下键入>>rltool,进入设计环境。启动SISODesignTool在matlab中键入num=40;den=conv([1,0],[1,2]);ex_1=tf(num,den),出现函数40/(s^2+2s)得到该系统的LTI对象模型ex_1。2、启动SISODesignTool窗口后,利用该窗口中File菜单下的吩咐Import,打开系统模型输入对话框窗口。采纳系统默认的结构,输入选中的对象ex_1,将限制对象G设置为ex_1,限制器C设为1,其他的环节H,F均运用默认的取值1.单击OK在SISODesignTool中会自动绘制此负反馈线性系统的根轨迹图,以及系统波特图,如图3、点击Analysis中的otherloopresponse选择step得到闭环系统阶跃响应曲线如图可以看到校正前的超调量为60.4%,过渡过程时间为3.66s,明显不满意要求。4、经过反复试验,得出加入零点-5,加入极点-33,是满意要求的,可得到如下的根轨迹图以及伯德图5、得到的阶跃响应曲线如下超调量15.8%<20%,过渡过程时间0.715s<1.5s,满意要求说明加的零极点是正确的6、在运用SISODesignTool完成系统的设计之后,在系统实现之前必需对设计好的系统通过Simulink进行仿真分析,进一步对限制器C进行验证,以确保系统设计的正确性。下图为系统相应的Simulink模型:7、编写M文件运行以得出超调量和过渡过程时间,以验证是否正确,程序如下:num0=40;den0=conv([1,0],[1,2]);num1=[0.2,1];den1=[0.03,1];[num2,den2]=series(num0,den0,num1,den1);[num,den]=cloop(num2,den2);t=0:0.005:5;y=step(num,den,t);plot(t,y);N=length(t);yss=y(N);holdon[ymax,i]=max(y);mp=(ymax-yss)*100/yss,i=N;whileabs(y(i)-yss)/yss<=0.02i=i-1;endTs=t(i),运行结果:mp=15.7500Ts=0.7150运行所得的曲线如下:运行结果分析:所得出的结果,超调量15.7500%<20%,过渡过程时间0.7150s<1.5s,满意设计要求,证明设计的没有问题,符合设计要求。三、串联校正装置中增益、极点和零点对系统性能的影响。(1)加入增益68,所得到的根轨迹及伯德图:编写M程序,得出图像及超调量,过渡过程时间等值,来推断加入增益对系统性能的影响,程序如下:num0=40;den0=conv([1,0],[1,2]);num1=68*[0.2,1];den1=[0.03,1];[num2,den2]=series(num0,den0,num1,den1);[num,den]=cloop(num2,den2);t=0:0.005:1;y=step(num,den,t);plot(t,y);%计算超调量mpN=length(t);yss=y(N);holdon%yss:稳态值[ymax,i]=max(y);mp=(ymax-yss)*100/yss,i=N;whileabs(y(i)-yss)/yss<=0.02i=i-1;endTs=t(i),运行结果为mp=69.4107Ts=0.2600运行曲线为:由以上结果及图像可以得出以下结论:加入增益之后超调量变大了,过渡过程时间变短了,波动的更加厉害,稳态误差变小了。说明可以变更开环增益的大小,从而改善稳态误差(2)加入零点-10,所得到的根轨迹及伯德图:阶跃响应曲线如下:由图可以得出,加入零点后对系统的性能产生了很大的影响,过渡过程时间变长了,超调量变小了,波动次数少了,而且增加开环极点,使得原系统根轨迹的整体走向在S平面对右移,使系统稳定性变坏。(3)加入极点-10后所得到的根轨迹以及伯德图:阶跃响应曲线如下:由图可以看出加入零点之后系统的性能发生的变更,过渡过程时间变得更长了,超调量变大了,波动次数变多了,增加开环零点,使得原系统根轨迹的整体走向在S平面对右移,使系统稳定性得到改善。四、设计小结这个设计是应用了matlab中新的功能,是协助设计闭环系统根轨迹的仿真软件Rltool,可以用来进行根轨迹校正的一个软件,在运用的过程中遇到了许多问题,参照着课本,一步一步的进行探究,遇到课本上解决不了的,就向同学和老师询问,或者在网上搜些资料以帮助自己理解一些概念,从而更快的理解课程设计须要做的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论