




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆的圆心为()A. B. C. D.2.某地区一次联考的数学成绩近似地服从正态分布,已知,现随机从这次考试的成绩中抽取个样本,则成绩小于分的样本个数大约为()A. B. C. D.3.函数的最小正周期是()A. B. C. D.4.在用反证法证明命题“三个正数a,b,c满足,则a,b,c中至少有一个不大于2”时,下列假设正确的是()A.假设a,b,c都大于2 B.假设a,b,c都不大于2C.假设a,b,c至多有一个不大于2 D.假设a,b,c至少有一个大于25.已知函数在区间内没有极值点,则的取值范围为A. B. C. D.6.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A.60种 B.63种 C.65种 D.66种7.已知的边上有一点满足,则可表示为()A. B.C. D.8.函数的单调递增区间是()A. B. C.(1,4) D.(0,3)9.图1和图2中所有的正方形都全等,将图1中的正方形放在图2中的①②③④某一位置,所组成的图形能围成正方体的概率是()A.14 B.C.34 D.10.已知点,是抛物线:上的两点,且线段过抛物线的焦点,若的中点到轴的距离为2,则()A.2 B.4 C.6 D.811.在市高二下学期期中考试中,理科学生的数学成绩,已知,则从全市理科生中任选一名学生,他的数学成绩小于110分的概率为()A.0.15 B.0.50 C.0.70 D.0.8512.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽。2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的A.甲辰年 B.乙巳年 C.丙午年 D.丁未年二、填空题:本题共4小题,每小题5分,共20分。13.在的二项展开式中,项的系数为_____(结果用数值表示).14.已知向量,若则实数的值为_______.15.在上随机地取一个数,则事件“直线与圆相交”发生的概率为__________.16.已知复数z满足,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了让观赏游玩更便捷舒适,常州恐龙园推出了代步工具租用服务.已知有脚踏自行车与电动自行车两种车型,采用分段计费的方式租用.型车每分钟收费元(不足分钟的部分按分钟计算),型车每分钟收费元(不足分钟的部分按分钟计算),现有甲乙丙丁四人,分别相互独立地到租车点租车骑行(各租一车一次),设甲乙丙丁不超过分钟还车的概率分别为,并且四个人每人租车都不会超过分钟,甲乙丙均租用型车,丁租用型车.(1)求甲乙丙丁四人所付的费用之和为25元的概率;(2)求甲乙丙三人所付的费用之和等于丁所付的费用的概率;(3)设甲乙丙丁四人所付费用之和为随机变量,求的概率分布和数学期望.18.(12分)已知函数的导函数为,的图象在点处的切线方程为,且.(1)求函数的解析式;(2)若对任意的:,存在零点,求的取值范围.19.(12分)已知集合=,集合=.(1)若,求;(2)若AB,求实数的取值范围.20.(12分)已知函数/(x.(1)当时,求在最小值;(2)若存在单调递减区间,求的取值范围;(3)求证:.21.(12分)设函数在时取得极值.(1)求a的值;(2)求函数的单调区间.22.(10分)已知函数.(1)若函数在处取得极值,求的值和函数的单调区间;(2)若关于的不等式在上恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
将ρ=2cos()化为直角坐标方程,可得圆心的直角坐标,进而化为极坐标.【详解】ρ=2cos()即ρ2=2ρcos(),展开为ρ2=2ρ(cosθ﹣sinθ),化为直角坐标方程:x2+y2(x﹣y),∴1,可得圆心为C,可得1,tanθ=﹣1,又点C在第四象限,θ.∴圆心C.故选D.【点睛】本题考查了极坐标方程化为直角坐标方程、三角函数求值,考查了推理能力与计算能力,属于中档题.2、A【解析】分析:根据正态分布的意义可得即可得出结论.详解:由题可得:又对称轴为85,故,故成绩小于分的样本个数大约为100x0.04=4故选A.点睛:本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题关键是要知道.3、C【解析】
根据三角函数的周期公式,进行计算,即可求解.【详解】由角函数的周期公式,可得函数的周期,又由绝对值的周期减半,即为最小正周期为,故选C.【点睛】本题主要考查了三角函数的周期的计算,其中解答中熟记余弦函数的图象与性质是解答的关键,着重考查了计算与求解能力,属于基础题.4、A【解析】
否定结论,同时“至少有一个”改为“全部”【详解】因为“a,b,c至少有一个不大于2”的否定是“a,b,c都大于2”,故选A.【点睛】本题考查反证法,在反证法中假设命题反面成立时,结论需要否定的同时,“至少”,“至多”,“都”等词语需要改变.5、D【解析】
利用三角恒等变换化简函数的解析式,再根据正弦函数的极值点,可得2kπ2ωπ4ωπ2kπ,或2kπ2ωπ4ωπ2kπ,k∈Z,由此求得ω的取值范围.【详解】∵函数=sin2ωx﹣2•1=sin2ωxcos2ωx+1=2sin(2ωx)+1在区间(π,2π)内没有极值点,∴2kπ2ωπ4ωπ2kπ,或2kπ2ωπ4ωπ2kπ,k∈Z.解得kω,或kω,令k=0,可得ω∈故选D.【点睛】本题主要考查三角恒等变换,正弦函数的极值点,属于中档题.6、D【解析】试题分析:要得到四个数字的和是偶数,需要分成三种不同的情况,当取得个偶数时,有种结果,当取得个奇数时,有种结果,当取得奇偶时有种结果,共有种结果.故答案为D.考点:分类计数原理.7、D【解析】
由,结合题中条件即可得解.【详解】由题意可知.故选D.【点睛】本题主要考查了平面向量的基本定理,熟练掌握向量的加减法及数乘运算是解题的关键,属于基础题.8、B【解析】
求出函数的导数,在解出不等式可得出所求函数的单调递增区间.【详解】,,解不等式,解得,因此,函数的单调递增区间是,故选B.【点睛】本题考查函数单调区间的求解,一般是先求出导数,然后解出导数不等式,将解集与定义域取交集得出单调区间,但单调区间不能合并,考查计算能力,属于中等题.9、C【解析】分析:将图1的正方形放在图2中①的位置出现重叠的面,不能围成正方体,再根据概率公式求解可得.详解:由图共有4种等可能结果,其中将图1的正方形放在图2中①的位置出现重叠的面,不能围成正方体,则所组成的图形能围成正方体的概率是34故选:C.点睛:本题考查了概率公式和展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形,注意:只要有“田”字格的展开图都不是正方体的表面展开图.10、C【解析】
利用抛物线的抛物线的定义写出弦长公式,利用中点横坐标来求得弦长.【详解】设,,则,而的中点的横坐标为,所以.故选C.【点睛】本题考查直线与抛物线的位置关系,以及抛物线的定义和性质,考查运算求解能力和化归与转化的数学思想.11、D【解析】
根据正态密度曲线的对称性得出,于是可计算出,于此可得出结果.【详解】由于,由正态密度曲线的对称性可得,因此,,故选D.【点睛】本题考查正态分布在指定区间上的概率的计算,解题的关键在于利用正态密度曲线的对称性将所求概率转化为已知区间概率进行计算,属于基础题.12、C【解析】
按照题中规则依次从2019年列举到2026年,可得出答案。【详解】根据规则,2019年是己亥年,2020年是庚子年,2021年是辛丑年,2022年是壬寅年,2023年是癸卯年,2024年是甲辰年,2025年是乙巳年,2026年是丙午年,故选:C。【点睛】本题考查合情推理的应用,理解题中“干支纪年法”的定义,并找出相应的规律,是解本题的关键,考查逻辑推理能力,属于中等题。二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
通过二项展开式的通项公式求出展开式的通项,利用的指数为2,求出展开式中的系数.【详解】解:展开式的通项为.令得到展开式中的系数是.故答案为:1.【点睛】本题是基础题,考查利用二项展开式的通项公式解决二项展开式的特定项问题.考查计算能力.14、【解析】
由两向量垂直得数量积为0,再代入坐标运算可求得k.【详解】由题意可得,代入坐标可得,解得。填。【点睛】本题考查用数量积表示两向量垂直及空间向量的坐标运算。15、【解析】试题分析:直线y=kx与圆相交,需要满足圆心到直线的距离小于半径,即,解得,而,所以所求概率P=.【考点】直线与圆位置关系;几何概型【名师点睛】本题是高考常考知识内容,考查几何概型概率的计算.本题综合性较强,具有“无图考图”的显著特点,涉及点到直线距离的计算.本题能较好地考查考生分析问题、解决问题的能力及基本计算能力等.16、【解析】
求出复数,代入模的计算公式得.【详解】由,所以.【点睛】本题考查复数的四则运算及模的计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】
(1)“甲乙丙丁四人所付的费用之和为25元”,即4人均不超过30分钟。(2)即丁付20元,甲乙丙三人中有且只有一人付10,其余2人付5,分3种情况。用相互独立事件同时发生概率公式与互斥事件的和事件概率公式可求解。(3)根据分类可知随机变量的所有取值为25,30,35,40,45,50,求出概率及期望。【详解】(1)记“甲乙丙丁四人所付的费用之和为25元”为事件,即4人均不超过30分钟,则.答:求甲乙丙丁四人所付的费用之和为25元的概率是(2)由题意,甲乙丙丁在分钟以上且不超过分钟还车的概率分别为,设“甲乙丙三人所付费用之和等于丁所付费用”为事件,则答:甲乙丙三人所付的费用之和等于丁所付的费用的概率是.(3)①若“4人均不超过30分钟”此时随机变量的值为25,即为事件,由(1)所以.②记“4人中仅有一人超过30分钟”为事件,事件又分成两种情况“超过30分钟的这一人是甲乙丙中的一个”和“超过30分钟的这一人是丁”,分别将上述两种情况记为事件和.i.事件对应的的值为30,此时;ii.事件对应的的值为35,此时.③记“4人中仅有两人超过30分钟”为事件,事件又分成两种情况“超过30分钟的两人是甲乙丙中的两个”和“超过30分钟的两人是甲乙丙中的一个和丁”,分别将上述两种情况记为事件和.i.事件对应的的值为35,此时;i.事件对应的的值为40,此时④记“4人中仅有三人超过30分钟”为事件,事件又分成两种情况“超过30分钟的三人是甲乙丙”和“超过30分钟的三人是甲乙丙中的两个和丁”,分别将上述两种情况记为事件和.i.事件对应的的值为40,此时;i.事件对应的的值为45,此时.⑤记“4人均超过30分钟”为事件,则随机变量的值为50,此时;综上:随机变量的所有取值为25,30,35,40,45,50,且;;;;;;所以甲乙丙丁四人所付费用之和的分别为253035404550所以.答:甲乙丙丁四人所付费用之和的数学期望为.【点睛】本题综合考查相互独立事件同时发生概率公式与互斥事件的和事件概率公式,同时考查离散型随机变量的分布列及其期望,需要学生分类清晰,逻辑有条理,运算准确。18、(1)(2)【解析】
(1)根据切线、函数值、导数值计算解析式;(2)计算出在时的值域,再根据求解出的范围.【详解】解:(1)∵,∴,,∵,∴,①∵的图象在点处的切线方程为,∴当时,,且切线斜率,则,②.,③,联立解得,,,即;(2)当时,当时,当时,又,,,.所以因为对任意的,存在零点,所以,即,所以【点睛】对于形如的函数零点问题,可将其转化为的方程根的问题,或者也可以利用与的函数图象交点来解决问题.19、(1)(2)【解析】分析:(1)先化简集合A,B,再求.(2)先化简集合A,B,再根据AB得到,解不等式得到实数的取值范围.详解:(1)当时,,解得.则.由,得.则.所以.(2)由,得.若AB,则解得.所以实数的取值范围是.点睛:(1)本题主要考查集合的运算和集合的关系,意在考查学生对这些知识的掌握水平和基本计算能力.(2)把分式不等式通过移项、通分、因式分解等化成的形式→化成不等式组→解不等式组得解集.20、(1)1;(2);(3)见解析【解析】分析:(I)可先求f′(x),从而判断f(x)在x∈[1,+∞)上的单调性,利用其单调性求f(x)在x∈[1,+∞)最小值;(Ⅱ)求h′(x),可得若f(x)存在单调递减区间,需h′(x)<0有正数解.从而转化为:ax2+2(a﹣1)x+a<0有x>0的解.通过对a分a=0,a<0与当a>0三种情况讨论解得a的取值范围;(Ⅲ)(法一)根据(Ⅰ)的结论,当x>1时,,即.,再构造函数,令,有,从而,问题可解决;(法二)可用数学归纳法予以证明.当n=1时,ln(n+1)=ln2,3ln2=ln8>1⇒,成立;设时,命题成立,即,,再去证明n=k+1时,即可(需用好归纳假设).详解:(1),定义域为.∵∴在上是增函数..(2)因为因为若存在单调递减区间,所以有正数解.即有有解.①当时,明显成立.②当时,开口向下的抛物线,总有有解;③当时,开口向上的抛物线,即方程有正跟.当时,;,解得.综合①②③知:.综上所述:的取值范围为.(3)(法一)根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理说课:电除颤
- 商品质量验货合同(2篇)
- 感控专职人员培训课件
- 教科版(2017)科学五年下册《热在金属中的传递》说课(附反思、板书)课件
- 汽车洗车美容服务协议
- 户外广告合同
- 仓库管理员年终总结
- D模型设计服务协议
- 护理安全不良事件
- 抗体专利培训
- 中学生人生规划调查表
- 四川省宜宾市2022-2023学年八年级下学期期末数学试题( 含答案解析 )
- 黄斑水肿护理查房
- 创业带动就业补贴花名册
- 特种设备作业人员体检表(叉车)
- 正己烷-危险化学品安全标签
- 永磁同步电机矢量控制方法的研究毕业论文(设计)
- FMEA潜在失效模式及分析标准表格模版
- 停车场月租卡办理登记表
- 项目六建筑工程项目成本管理
- 深基坑格构柱塔吊基础专项施工方案
评论
0/150
提交评论