2022-2023学年宁夏银川二中数学高二下期末复习检测试题含解析_第1页
2022-2023学年宁夏银川二中数学高二下期末复习检测试题含解析_第2页
2022-2023学年宁夏银川二中数学高二下期末复习检测试题含解析_第3页
2022-2023学年宁夏银川二中数学高二下期末复习检测试题含解析_第4页
2022-2023学年宁夏银川二中数学高二下期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知X~B(5,14),则A.54 B.72 C.32.全国高中联赛设有数学、物理、化学、生物、信息5个学科,3名同学欲报名参赛,每人必选且只能选择一个学科参加竞赛,则不同的报名种数是()A. B. C. D.3.甲乙丙丁四人参加数学竞赛,其中只有一位获奖.有人走访了四人,甲说:“乙、丁都未获奖.”乙说:“是甲或丙获奖.”丙说:“是甲获奖.”丁说:“是乙获奖.”四人所说话中只有两位是真话,则获奖的人是()A.甲 B.乙 C.丙 D.丁4.已知函数为奇函数,则()A. B. C. D.5.将函数的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则的一个可能取值为A. B. C.0 D.6.设等比数列的前n项和为,公比,则()A. B. C. D.7.设随机变量,随机变量,若,则()A. B. C. D.8.复数(为虚数单位),则的共轭复数的虚部是()A. B. C. D.9.已知是定义在上的可导函数,的图象如图所示,则的单调减区间是()A. B. C. D.10.已知下表所示数据的回归直线方程为y=3.4x+a,则实数ax23456y48111418A.2.6 B.-2.6 C.-2.8 D.-3.411.设,且,则下列结论中正确的是()A. B. C. D.12.盒子里共有个除了颜色外完全相同的球,其中有个红球个白球,从盒子中任取个球,则恰好取到个红球个白球的概率为().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.i为虚数单位,设复数z满足,则z的虚部是____14.某单位有职工52人,现将所有职工按1、2、3、…、52随机编号,若采用系统抽样的方法抽取一个容量为4的样本,已知6号、32号、45号职工在样本中,则样本中还有一个职工的编号是________.15.复数(i是虚数单位)的虚部是_______.16.球的半径为,球的一个截面与球心的距离为,则截面的半径为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-5:不等式选讲已知函数(Ⅰ)解不等式;(Ⅱ)对及,不等式恒成立,求实数的取值范围.18.(12分)已知函数(,e为自然对数的底数).(1)若,求的最大值;(2)若在R上单调递减,①求a的取值范围;②当时,证明:.19.(12分)某保险公司拟推出某种意外伤害险,每位参保人交付元参保费,出险时可获得万元的赔付,已知一年中的出险率为,现有人参保.(1)求保险公司获利在(单位:万元)范围内的概率(结果保留小数点后三位);(2)求保险公司亏本的概率.(结果保留小数点后三位)附:.20.(12分)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:降水量XX<300300≤X<700700≤X<900X≥900工期延误天数Y02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9.求:工期延误天数Y的均值与方差;21.(12分)设函数,.(1)求函数的单调区间;(2)当时,若函数没有零点,求的取值范围.22.(10分)已知函数是奇函数.(1)求;(2)若,求x的范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

利用二项分布的数学期望,计算出EX,再利用期望的性质求出E【详解】∵X~B5,14,∴E故选:B。【点睛】本题考查二项分布的数学期望与期望的性质,解题的关键就是利用二项分布的期望公式以及期望的性质,考查计算能力,属于基础题。2、C【解析】分析:利用分布计数乘法原理解答即可.详解:全国高中联赛设有数学、物理、化学、生物、信息5个学科,3名同学欲报名参赛,每人必选且只能选择一个学科参加竞赛,则每位同学都可以从5科中任选一科,由乘法原理,可得不同的报名种数是故选C.点睛:本题考查分布计数乘法原理,属基础题.3、C【解析】

本题利用假设法进行解答.先假设甲获奖,可以发现甲、乙、丙所说的话是真话,不合题意;然后依次假设乙、丙、丁获奖,结合已知,选出正确答案.【详解】解:若是甲获奖,则甲、乙、丙所说的话是真话,不合题意;若是乙获奖,则丁所说的话是真话,不合题意;若是丙获奖,则甲乙所说的话是真话,符合题意;若是丁获奖,则四人所说的话都是假话,不合题意.故选C.【点睛】本题考查了的数学推理论证能力,假设法是经常用到的方法.4、A【解析】

根据奇函数性质,利用计算得到,再代入函数计算【详解】由函数表达式可知,函数在处有定义,则,,则,.故选A.【点睛】解决本题的关键是利用奇函数性质,简化了计算,快速得到答案.5、B【解析】将函数的图象沿轴向右平移个单位后,

得到函数的图象对应的函数解析式为再根据所得函数为偶函数,可得故的一个可能取值为:故选B.6、D【解析】

由等比数列的通项公式与前项和公式分别表示出与,化简即可得到的值【详解】因为等比数列的公比,则,故选D.【点睛】本题考查等比数列的通项公式与前项和公式,属于基础题。7、A【解析】试题分析:∵随机变量,∴,解得.∴,∴,故选C.考点:1.二项分布;2.n次独立重复试验方差.8、C【解析】分析:求出复数,得到,即可得到答案.详解:故的共轭复数的虚部是3.故选C.点睛:本题考查复数的乘法运算,复数的共轭复数等,属基础题.9、B【解析】分析:先根据图像求出,即得,也即得结果.详解:因为当时,,所以当时,,所以的单调减区间是,选B.点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,经常转化为解方程或不等式.10、B【解析】

根据最小二乘法:a=y-b【详解】由题意得:x=2+3+4+5+6∴a=11-3.4×4=-2.6本题正确选项:B【点睛】本题考查利用最小二乘法求解回归直线问题,关键在于明确回归直线必过x,y,因此代入点x,11、B【解析】

利用不等式性质判断或者举反例即可.【详解】对A,当时不满足对B,因为则成立.故B正确.对C,当时不满足,故不成立.对D,当时不满足,故不成立.故选:B【点睛】本题主要考查了不等式的性质运用等,属于基础题型.12、B【解析】由题意得所求概率为.选.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:直接利用复数的乘法运算,化简复数,然后求出复数的虚部.详解:由,可得,,可得,所以,的虚部是,故答案为点睛:本题主要考查乘法运算以及复数共轭复数的概念,意在考查对复数基本概念与基本运算掌握的熟练程度.14、19【解析】按系统抽样方法,分成4段的间隔为=13,显然在第一段中抽取的起始个体编号为6,第二段应将编号6+13=19的个体抽出.这就是所要求的.15、-1【解析】

由题意,根据复数的运算,化简得,即可得到复数的虚部.【详解】由题意,复数,所以复数的虚部为.【点睛】本题主要考查了复数的四则运算及复数的分类,其中解答中熟记复数的四则运算,正确化简、运算复数,再利用复数的概念求解是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】

利用勾股定理,计算出截面的半径.【详解】设球心为,截面圆心为,依题意,,故,即截面的半径为.故答案为:【点睛】本小题主要考查球的截面半径的计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ).(Ⅱ).【解析】

详解:(Ⅰ)当时,由,解得;当时,不成立;当时,由,解得.所以不等式的解集为.(Ⅱ)因为,所以.由题意知对,,即,因为,所以,解得.【点睛】⑴绝对值不等式解法的基本思路是:去掉绝对值号,把它转化为一般的不等式求解,转化的方法一般有:①绝对值定义法;②平方法;③零点区域法.⑵不等式的恒成立可用分离变量法.若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围.这种方法本质也是求最值.一般有:①为参数)恒成立②为参数)恒成立.18、(1)1;(2)①,②证明见解析.【解析】

(1)求出函数的导函数,利用导函数与函数单调性的关系当,求出单调递增区间,当,求出函数的单调递减区间,进而可求出最大值.(2)①求出对恒成立,化为对恒成立,记,讨论值,求出的最小值即可证出;②由题意可得,即,两边取对数可得,下面采用分析法即可证出.【详解】(1)时,时,,在上单调递增时,,在上单调递减(2)由①在R上单调递减,对恒成立,即对恒成立,记,则对恒成立,当时,,符题当时,时,,在上单调递减时,,在上单调递增;当时,时,,在上单调递减时,,在上单调递增;综上:②当时,在上单调递减,,,,.要证,即证下面证明令,,则,在区间上单调递增,,得证【点睛】本题考查了导函数在研究函数单调性的应用,分析法证明不等式,考查了分类讨论的思想,综合性比较强,属于难题.19、(1);(2).【解析】

(1)由题意知,总的保费为万元,分析出保险公式获利万元和万元的人数别为、,由此得出所求概率为;(2)由题意得出保险公式亏本时,由此可得出所求概率为.【详解】每个人在一年内是否遭遇意外伤害可以看成是一次随机试验,把遭遇意外伤害看作成功,则成功概率为.人参保可以看成是次独立重复试验,用表示一年内这人中遭遇意外伤害的人数,则.(1)由题意知,保险公司每年的包费收入为万,若获利万元,则有人出险;若获利万元,则有人出险.当遭遇意外伤害的人数时,保险公司获利在(单位:万元)范围内.其概率为.保险公司获利在(单位:万元)范围内的概率为;(2)当遭遇意外伤害的人数时,保险公司亏本..保险公司亏本的概率为.【点睛】本题考查概率的计算,考查对立事件概率的计算,解题时要结合条件分析出出险人数,结合表格中的概率进行计算,考查计算能力,属于中等题.20、见解析【解析】分析:先求P(X<300)、P(300≤X<700)、P(700≤X<900)、P(X≥900),再求工期延误天数Y的均值与方差.详解:由已知条件和概率的加法公式有:P(X<300)=0.3,P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2.P(X≥900)=1-P(X<900)=1-0.9=0.1.所以Y的分布列为:Y02610P0.30.40.20.1于是E(Y)=0×0.3+2×0.4+6×0.2+10×0.1=3;D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y的均值为3,方差为9.8.点睛:(1)本题主要考查概率的计算,考查随机变量的期望和方差的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题解题的关键是求出P(X<300)、P(300≤X<700)、P(700≤X<900)、P(X≥900).21、当时,的增区间是,当时,的增区间是,减区间是;【解析】

(1)求函数f(x)的导数,利用导数和单调性之间的关系即可求函数的单调区间;(2)根据函数f(x)没有零点,转化为对应方程无解,即可得到结论.【详解】,,,当时,,在区间上单调递增,当时,令,解得;令,解得,综上所述,当时,函数的增区间是,当时,函数的增区间是,减区间是;依题意,函数没有零点,即无解,由1知:当时,函数在区间上为增函数,区间上为减函数,只需,解得.实数a的取值范围为【点睛】本题主要考查函数的单调性和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论