利用非传统的理念显著提高手机效率-基础电子_第1页
利用非传统的理念显著提高手机效率-基础电子_第2页
利用非传统的理念显著提高手机效率-基础电子_第3页
利用非传统的理念显著提高手机效率-基础电子_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档-下载后可编辑利用非传统的理念显著提高手机效率-基础电子专门设计和生产手机的企业,这个行业的竞争非常激烈,客户有许多严苛的要求,其一重点是电池寿命;而另一要求是手机尺寸,这两者都必须经过优化,同时手机的成本也必须尽量减小。这种要求使设计人员在设计中务必谨慎仔细,尽量减少组件数目,并避免过多的耗电。

随着各种功能不断增加,手机已俨然成为一个处理器的汇总地,幸好,要找到工作电压为1.8V的处理器并不困难。我还曾遇到过为带有三个相邻处理器的手机开发电源的挑战,该三个处理器是用于提供诸如GPS、WLAN和蓝牙之类的功能,而每个处理器都得单独供电,以便在其处于空闲状态时可关断模块。这种设计的要求之一是漏电流必须,当锂离子电池电压降到2.9V时电源必须关断锂离子电池。另一个要求是尽量减少组件数目和电路板空间;而的要求是把成本降到。

这个客户采用了一个专门针对GSM手机而设计的芯片组。该芯片组的功率管理单元包含了一个1.8V的降压调节器和一个2.5V的降压调节器。按照这种组合,显而易见的解决方案是以2.5V降压调节器作为电源,每个负载使用一个单独的低压降(LDO)调节器。由于降压调节器管理线性调节器--LDO,因此LDO只需管理负载电压调节即可。现有许多能够满足这种要求的小型调节器,比如飞兆半导体公司的FAN2564。该器件的工作电压为1.8V,电流300mA,而压降只有180mV,完够提供足够的裕量(如图1所示)。

图1

FAN2564采用CSP封装,电路板占位空间非常小,而组件数目也减至少,能够满足客户的要求。为了保持稳定性,该调节器需要一个4.7uF的输出电容。这种电容的尺寸是2mmX1.2mm,有利于减小电路板空间。尽管整体耗电量已经很低,但还是可以更低的。每一个调节器在线性调节中都会产生功耗,而线性调节的总功耗为315mW,相当于66%的总效率。即使在关断状态,每个调节器的静态电流也达50uA。这样一来,即使三个负载全都处于待机状态,仍有150uA的漏电流产生,可见确实仍有改进的余地。

图2

由于给负载供电的是降压调节器,因此不必在每个负载上进行电压调节,只需分别关断对每个负载的供电即可。虽然一个简单的开关就足够,不过处理器的电源要求相当严苛。若出现正或负的电压尖峰,处理器可能发生闩锁现象。为了避免这种情况,可在电压源上使用一个电容来消除电压尖峰。如果采用简单的开关来降低处理器的功耗,在处理器上电时便需要考虑到这个电容。在刚开始上电时,该电容的表现是短路,耗电量很大。这种瞬间短路现象会降低电源电压,造成一大问题,因为电源电压降低会造成线路上其它处理器的复位。解决办法是采用一个智能型负载开关(如飞兆半导体的FPF1004)来控制电流增加的压摆率。FPF1004器件能够管理负载的增加,确保电源线路电压保持在调节范围内。

使用开关的好处在于提高效率,1.8V降压调节器的效率为86%。FPF1004的功耗主要是由开关的串联电阻产生的。在规格电流下,总功耗只有3.6mW,亦即0.4%的损耗,相当于约85%的电源总效率,相比其它电源,效率提高了29%。

把功耗降至需要打破传统的思维方式。以上述挑战为例,我们采用非传统的方法,开发出一个可满足所有要求的电源。相比使用低压降调节器,采用某些智能型负载开关可以尽量降低成本和所需的电路板面积。这样一来,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论