版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年广西壮族自治区桂林市石塘中学高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数f(x)=2x+3x﹣6的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(﹣1,0)参考答案:B【考点】函数零点的判定定理.【分析】由函数零点判定定理可知,求函数值,使之一正一负即可.【解答】解:∵f(0)=20+3×0﹣6=﹣5,f(1)=21+3×1﹣6=﹣1,f(2)=22+3×2﹣6=4,故选B.2.已知一个算法:第一步,;第二步,如果,则,输出;否则执行第三步;第三步,如果,则,输出,否则输出“无解”.如果,那么执行这个算法的结果是
(
)A.3
B.6
C.2
D.无解参考答案:C3.下列给出的赋值语句中正确的是:
(
)A.3=A
B.A=0
C.B=A=2
D.M+N=0
参考答案:B略4.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是(
)A. B. C. D.参考答案:B【分析】由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.5.下列分别为集合A到集合B的对应:其中,是从A到B的映射的是()A.(1)(2) B.(1)(2)(3) C.(1)(2)(4) D.(1)(2)(3)(4)参考答案:A【考点】映射.【专题】对应思想;定义法;函数的性质及应用.【分析】根据映射的定义,对四个对应关系进行分析、判断即可.【解答】解:映射的定义是:集合A中任意一个元素在集合B中都有唯一确定的元素和它对应,由此对应即可构成映射;对于(1),能构成映射,因为集合A中每一个元素在集合B中都有唯一确定的元素和它对应;对于(2),能构成映射,因为集合A中每一个元素在集合B中都有唯一确定的元素和它对应;对于(3),不能构成映射,因为集合A中元素a在集合B中对应的元素是x和y,不唯一;对于(4),不能构成映射,因为集合A中元素b在集合B中无对应元素,且c在集合B中对应的元素是y和z,不唯一.综上,从A到B的映射的是(1)、(2).故选:A.【点评】本题考查了映射的概念与应用问题,是基础题目.6.(5分)已知lga+lgb=0,函数f(x)=ax与函数g(x)=﹣logbx的图象可能是() A. B. C. D. 参考答案:C考点: 对数函数的图像与性质;指数函数的图像与性质.专题: 函数的性质及应用.分析: 由lga+lgb=0,则得到lgab=0,即ab=1,然后根据指数函数和对数函数的性质即可判断函数的图象.解答: 解;解:∵lga+lgb=0,∴lgab=0,即ab=1,b=∵函数f(x)=ax与函数g(x)=﹣logbx∴函数f(x)=ax与函数g(x)=logax,a>1,f(x)与g(x)都是单调递增,0<a<1,f(x)与g(x)都是单调递减,∴f(x)与g(x)单调相同,故选:C点评: 本题主要考查指数函数和对数函数的图象的判断,利用对数的运算法则确定ab=1是解决本题的关键,根据函数单调性的对应关系解决本题即可.7.把函数的图象上所有的点向左平行移动个单位长度,再把所得图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到的图象所表示的函数是(
)A. B.C. D.参考答案:C略8.函数的定义域是(
)A.B.C.D.参考答案:A略9.法国学者贝特朗发现,在研究事件A“在半径为1的圆内随机地取一条弦,其长度超过圆内接等边三角形的边长”的概率的过程中,基于对“随机地取一条弦”的含义的的不同理解,事件A的概率存在不同的容案该问题被称为贝特朗悖论现给出种解释:若固定弦的一个端点,另个端点在圆周上随机选取,则=(
)A. B. C. D.参考答案:B【分析】由几何概型中的角度型得:,得解.【详解】设固定弦的一个端点为,则另一个端点在圆周上劣弧上随机选取即可满足题意,则(A),故选:B.【点睛】本题考查了几何概型中的角度型,属于基础题.10.已知,则等于(
)(A)
(B)
(C)
(D)参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.计算:(﹣2)0﹣log2=.参考答案:
【考点】对数的运算性质.【分析】根据指数幂和对数的运算性质计算即可【解答】解:原式=1﹣=,故答案为:12.设△ABC的三个内角A、B、C所对的边长依次为a、b、c,若△ABC的面积为S,且S=a2﹣(b﹣c)2,则=
. 参考答案:4【考点】余弦定理. 【分析】根据S=a2﹣(b﹣c)2=bcsinA,把余弦定理代入化简可得4﹣4cosA=sinA,由此求得的值. 【解答】解:∵△ABC的面积为S,且S=a2﹣(b﹣c)2=a2﹣b2﹣c2+2bc=bcsinA, ∴由余弦定理可得﹣2bccosA+2bc=bcsinA, ∴4﹣4cosA=sinA, ∴==4, 故答案为4. 【点评】本题主要考查三角形的面积公式,余弦定理的应用,属于中档题. 13.求函数f(x)=2的值域为
.参考答案:(0,]∪(2,+∞)【考点】函数的值域.【专题】计算题;函数的性质及应用.【分析】分离常数法=1+,从而确定1+≤﹣1或1+>1,再确定函数的值域.【解答】解:∵=1+,∵﹣1≤x2﹣1且x2﹣1≠0,∴≤﹣2或>0,∴1+≤﹣1或1+>1,∴2∈(0,]∪(2,+∞);故答案为:(0,]∪(2,+∞).【点评】本题考查了分离常数法的应用及指数函数与反比例函数的应用.14.(5分)设集合M={y|y=3﹣x2},N={y|y=2x2﹣1},则M∩N=
.参考答案:[﹣1,3]考点: 交集及其运算.专题: 不等式的解法及应用.分析: 求二次函数的值域得到集合M,N,再根据两个集合的交集的定义求得M∩N.解答: ∵集合M={y|y=3﹣x2}={y|y≤3}=(﹣∞,3],N={y|y=2x2﹣1}={y|y≥﹣1}=[﹣1,+∞),则M∩N=[﹣1,3],故答案为[﹣1,3].点评: 本题主要考查求二次函数的值域,两个集合的交集的定义和求法,属于基础题.15.已知函数,若,则
参考答案:略16.与向量平行的单位向量为
.参考答案:略17.已知向量=(2,3),=(﹣4,1),则向量在向量方向上的投影为
.参考答案:【考点】平面向量数量积的运算.【分析】计算,||,代入投影公式计算即可.【解答】解:||=,||=,=﹣8+3=﹣5,∴向量在向量方向上的投影为||cos<>=||?==﹣.故答案为:.【点评】本题考查了平面向量的数量积运算,夹角运算,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆C的圆心在x轴上,且经过两点,.(1)求圆C的方程;(2)若点P在圆C上,求点P到直线的距离的最小值.参考答案:(1)(2)【分析】(1)设圆心在轴上的方程是,代入两点求圆的方程;(2)利用数形结合可得最短距离是圆心到直线的距离-半径.【详解】解:(1)由于圆C的圆心在x轴上,故可设圆心为,半径为,又过点,,故解得故圆C的方程.(2)由于圆C的圆心为,半径为,圆心到直线的距离为,又点P在圆C上,故点P到直线的距离的最小值为.【点睛】本题考查了圆的方程以及圆有关的最值问题,属于简单题型,当直线和圆相离时,圆上的点到直线的最短距离是圆心到直线的距离-半径,最长的距离是圆心到直线的距离+半径.19.(本小题满分12分)计算:(1)(2).参考答案:(1)8
(2)220.设的内角所对边的长分别是,且,的面积为,求与的值.参考答案:(1)由三角形面积公式,得,故.∵,∴.
(6分)(2)当时,由余弦定理得,,所以;(10分)当时,由余弦定理得,,所以.
(14分)21.如图,在四棱锥S-ABCD中,底面ABCD为菱形,E、P、Q分别是棱AD、SC、AB的中点,且SE⊥平面ABCD.(1)求证:PQ∥平面SAD;(2)求证:AC⊥平面SEQ.参考答案:(1)见解析;(2)见解析【分析】(1)取中点,连接,,得,利用直线与平面平行的判定定理证明平面.(2)连结,由已知条件得,由平面,得,利用直线与平面垂直的判定定理证明平面.【详解】(1)取中点,连接,,∵、分别是棱、的中点,∴,且.∵在菱形中,是中点,∴,且,∴且,∴为平行四边形.∴.∵平面,平面,∴平面.(2)连接,∵是菱形,∴,∵,分别是棱、的中点,∴,∴,∵平面,平面,∴,∵,、平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论