初二数学下册知识点复习总结_第1页
初二数学下册知识点复习总结_第2页
初二数学下册知识点复习总结_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初二数学下册知识点复习总结初二数学下册学问点复习总结

初二数学下册学问点复习总结平移与旋转旋转1.旋转的定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。2.旋转的性质:旋转后得到的图形与原图形之间有:对应点到旋转中心的距离相等,旋转角相等。中心对称1.中心对称的定义:假如一个图形绕某一点旋转180度后能与另一个图形重合,那么这两个图形叫做中心对称。2.中心对称图形的定义:假如一个图形绕一点旋转180度后能与自身重合,这个图形叫做中心对称图形。3.中心对称的性质:在中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。轴对称1.轴对称的定义:假如一个图形沿一条直线折叠后,直线两旁的局部能够相互重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。2.轴对称图形的性质:①角的平分线上的点到这个角的两边的距离相等。②线段垂直平分线上的点到这条线段两个端点的距离相等。③等腰三角形的“三线合一”。3.轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。图形变换图形变换的定义:图形的平移、旋转、和轴对称统称为图形变换。

函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,假如对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:根据自变量由小到大的挨次,把所描各点用平滑的曲线连接起来。

正比例函数和一次函数1、正比例函数和一次函数的概念

一般地,假如ykxb(k,b是常数,k0),那么y叫做x的一次函数。

特殊地,当一次函数ykxb中的b为0时,ykx(k为常数,k0)。这时,y叫做x的正比例函数。2、一次函数的图像

全部一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:

一次函数ykxb的图像是经过点(0,b)的直线;正比例函数ykx的图像是经过原点(0,0)的直线。(如下列图)4.正比例函数的性质

一般地,正比例函数ykx有以下性质:

(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k0时,y随x的增大而增大(2)当k

k的符号b的符号函数图像y0xyb00xK0注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论