版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年教师资格之中学数学学科知识与教学能力模拟考试试卷A卷含答案单选题(共60题)1、3~6个月胚胎的主要造血器官是A.骨髓B.脾脏C.卵黄囊D.肝脏E.胸腺【答案】D2、下列对向量学习意义的描述:A.1条B.2条C.3条D.4条【答案】D3、女,20岁,反复发热、颧部红斑,血液学检查白细胞减少,淋巴细胞减少,狼疮细胞阳性,诊断为系统性红斑狼疮(SLE),下列可作为SLE特异性标志的自身抗体为A.抗DNP抗体和ANAB.抗dsDNA抗体和抗Sm抗体C.抗dsDNA抗体和ANAD.抗ssDNA抗体和抗ANAE.抗SSA抗体和抗核蛋白抗体【答案】B4、动物免疫中最常用的佐剂是A.卡介苗B.明矾C.弗氏佐剂D.脂多糖E.吐温-20【答案】C5、“矩形”和“菱形”的概念关系是哪个()。A.同一关系B.交叉关系C.属种关系D.矛盾关系【答案】B6、维生素K缺乏和肝病导致凝血障碍,体内因子减少的是A.Ⅱ、Ⅶ、Ⅸ、ⅩB.Ⅱ、Ⅴ、Ⅶ、ⅩC.Ⅲ、Ⅴ、Ⅶ、ⅩD.Ⅳ、Ⅴ、Ⅶ、ⅩE.Ⅳ、Ⅶ、Ⅸ、Ⅹ【答案】A7、细胞介导免疫的效应细胞是A.TD细胞B.Th细胞C.Tc细胞D.NK细胞E.Ts细胞【答案】C8、教学方法中的发现式教学法又叫()教学法A.习惯B.态度C.学习D.问题【答案】D9、下述不符合正常骨髓象特征的是A.原粒+早幼粒占6%B.原淋+幼淋占10%C.红系占有核细胞的20%D.全片巨核细胞数为20个E.成堆及散在血小板易见【答案】B10、中性粒细胞碱性磷酸酶(NAP)积分正常参考值为A.140~174分B.30~130分C.105~139分D.71~104分E.7~51分【答案】B11、数学的三个基本思想不包括()。A.建模B.抽象C.猜想D.推理【答案】C12、义务教育课程的总目标是从()方面进行阐述的。A.认识,理解,掌握和解决问题B.基础知识,基础技能,问题解决和情感C.知识,技能,问题解决,情感态度价值观D.知识与技能,数学思考,问题解决和情感态度【答案】D13、肾上腺素试验是反映粒细胞的A.分布情况B.储备情况C.破坏情况D.消耗情况E.生成情况【答案】A14、下列命题不正确的是()。A.有理数对于乘法运算封闭B.有理数可以比较大小C.有理数集是实数集的子集D.有理数集是有界集【答案】D15、血液凝块的收缩是由于A.纤维蛋白收缩B.PF3的作用C.红细胞的叠连D.血小板收缩蛋白收缩E.GPⅠA/ⅡA复合物【答案】D16、患者男性,60岁,贫血伴逐渐加剧的腰痛半年余,肝、脾不大,Hb85g/L,白细胞3.6×10A.原发性巨球蛋白血症B.浆细胞白血病C.多发性骨髓瘤D.尿毒症E.急淋【答案】C17、患儿,男,7岁。患血友病5年,多次使用Ⅶ因子进行治疗,近2个月反复发热,口服抗生素治疗无效。实验室检查:Anti-HIV阳性。选择符合HIV诊断的结果A.CD4T细胞↓,CD8T细胞↓,CD4/CD8正常B.CD4细胞↓,CD8T细胞正常,CD4/CD8↓C.CD4T细胞正常,CD8T细胞↓,CD4/CD8↑D.CD4T细胞↑,CD8T细胞正常,CD4/CD8↑E.CD4T细胞正常,CD8T细胞↑,CD4/CD8↓【答案】B18、男性,67岁,因低热、乏力2月余就诊,两侧颈部可触及多个蚕豆大小淋巴结,脾肋下2cm,RBC4.25×10A.慢性粒细胞白血病B.幼淋巴细胞白血病C.急性淋巴细胞白血病D.慢性淋巴细胞白血病E.急性粒细胞白血病【答案】D19、抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为()。A.y=-x2B.y=-x2+1C.y=x2-1D.y=-x2-1【答案】D20、下列关于数学思想的说法中,错误的一项是()A.数学思想是现实世界的空间形式和数量关系反映到人的意识之中并经过思维活动产生的结果B.数学思想是要在现实世界中找到具有直观意义的现实原型C.数学思想是对数学事实与数学理论概念、定理、公式、法则、方法的本质认识D.数学思想是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观念【答案】B21、患者,女,35岁。发热、咽痛1天。查体:扁桃体Ⅱ度肿大,有脓点。实验室检查:血清ASO水平为300U/ml,10天后血清ASO水平上升到1200IU/ml。诊断:急性化脓性扁桃体。尿蛋白电泳发现以清蛋白增高为主,其蛋白尿的类型为A.肾小管性蛋白尿B.肾小球性蛋白尿C.混合性蛋白尿D.溢出性蛋白尿E.生理性蛋白尿【答案】B22、患者,女性,30岁,3年前无明显诱因出现巩膜发黄,全身乏力,常感头昏,皮肤瘙痒,并多次出现酱油色尿。近3个月来,乏力加重,无法正常工作而入院。体格检查发现重度贫血,巩膜黄染,肝肋下2cm,脾平脐,其余未见异常。血常规显示WBC9.0×10A.肾功能测定B.肝功能测定C.LDH、总胆红素、间接胆红素、血红蛋白尿等测定D.补体测定E.红细胞沉降率测定【答案】C23、下列哪一项不是溶血性贫血的共性改变()A.血红蛋白量减少B.网织红细胞绝对数减少C.红细胞寿命缩短D.尿中尿胆原增高E.血清游离血红蛋白升高【答案】B24、《普通高中数学课程标准(2017年版2020年修订)》中明确提出的数学核心素养不包括()A.数据分析B.直观想象C.数学抽象D.合情推理【答案】D25、抗凝血酶Ⅲ活性测定多采用A.凝固法B.透射免疫比浊法和散射免疫比浊法C.免疫学法D.发色底物法E.以上都是【答案】D26、免疫标记电镜技术获得成功的关键是A.对细胞超微结构完好保存B.保持被检细胞或其亚细胞结构的抗原性不受损失C.选择的免疫试剂能顺利穿透组织细胞结构与抗原结合D.以上叙述都正确E.以上都不对【答案】D27、《义务教育课程次标准(2011年版)》“四基”中“数学的基本思想”,主要是:①数学抽象的思想;②数学推理的思想;③数学建模的思想。其中正确的是()。A.①B.①②C.①②③D.②③【答案】C28、MTT比色法用于判断淋巴细胞增殖程度的指标是A.刺激指数(SI)B.着色细胞数C.每分钟脉冲数D.着色细胞数与所计数的总细胞数之比E.试验孔OD值【答案】A29、骨髓涂片中见异常幼稚细胞占40%,这些细胞的化学染色结果分别是:POX(-),SB(-),AS-D-NCE(-),α-NBE(+),且不被NaF抑制,下列最佳选择是A.急性单核细胞性白血病B.组织细胞性白血病C.急性粒细胞性白血病D.急性早幼粒白血病E.粒-单细胞性白血病【答案】B30、日本学者Tonegawa最初证明BCR在形成过程中()A.体细胞突变B.N-插入C.重链和轻链随机重组D.可变区基因片段随机重排E.类别转换【答案】D31、下列关于高中数学课程变化的内容,说法不正确的是()。A.高中数学课程中的向量既是几何的研究对象,也是代数的研究对象B.高中数学课程中,概率的学习重点是如何计数C.算法是培养逻辑推理能力的非常好的载体D.集合论是一个重要的数学分支【答案】B32、前列腺癌的标志A.AFPB.CEAC.PSAD.CA125E.CA15-3【答案】C33、成熟红细胞的异常形态与疾病的关系,下列哪项不正确()A.点彩红细胞提示铅中毒B.棘形红细胞提示β脂蛋白缺乏症C.半月形红细胞提示疟疾D.镰形红细胞提示HbF增高E.红细胞缗钱状形成提示高纤维蛋白原血症【答案】D34、正常人外周血经PHA刺激后,其T细胞转化率是A.10%~30%B.70%~90%C.50%~70%D.60%~80%E.30%~50%【答案】D35、男性,29岁,发热半个月。体检:两侧颈部淋巴结肿大(约3cm×4cm),肝肋下2cm,脾肋下2.5cm,胸骨压痛,CT显示后腹膜淋巴结肿大。检验:血红蛋白量85g/L,白细胞数3.5×10A.多发性骨髓瘤B.急性白血病C.恶性淋巴瘤D.传染性单核细胞增多症E.骨髓增生异常综合征【答案】C36、下列哪种疾病做PAS染色时红系呈阳性反应A.再生障碍性贫血B.巨幼红细胞性贫血C.红白血病D.溶血性贫血E.巨幼细胞性贫血【答案】C37、《九章算数注》的作者是()。A.刘徽B.秦九韶C.杨辉D.赵爽【答案】A38、()著有《几何原本》。A.阿基米德B.欧几里得C.泰勒斯D.祖冲之【答案】B39、Ⅳ型超敏反应A.由IgE抗体介导B.单核细胞增高C.以细胞溶解和组织损伤为主D.T细胞与抗原结合后导致的炎症反应E.可溶性免疫复合物沉积【答案】D40、男性,35岁,贫血已半年,经各种抗贫血药物治疗无效。肝肋下2cm,脾肋下1cm,浅表淋巴结未及。血象:RBC2.30×10A.慢性再生障碍性贫血B.巨幼细胞性贫血C.骨髓增生异常综合征D.缺铁性贫血E.急性粒细胞白血病【答案】C41、下列疾病在蔗糖溶血试验时可以出现假阳性的是A.巨幼细胞性贫血B.多发性骨髓瘤C.白血病D.自身免疫性溶贫E.巨球蛋白血症【答案】C42、在讲解“垂线”一课时,教师自制教具,将两根木条钉在一起并固定其中一根木条a,转动木条b,让学生观察,从而导入新课。这种导入方式属于()。A.实例导入B.直观导入C.悬念导入D.故事导入【答案】B43、疑似患有免疫增殖病的初诊应做A.血清蛋白区带电泳B.免疫电泳C.免疫固定电泳D.免疫球蛋白的定量测定E.尿本周蛋白检测【答案】D44、与巨幼细胞性贫血无关的是A.中性粒细胞核分叶增多B.中性粒细胞核左移C.MCV112~159flD.MCH32~49pgE.MCHC0.32~0.36【答案】B45、患者,男,28岁,患尿毒症晚期,拟接受肾移植手术。介导超急性排斥反应的主要物质是A.细胞毒抗体B.细胞毒T细胞C.NK细胞D.K细胞E.抗Rh抗体【答案】A46、出血时间测定狄克法正常参考范围是()A.2~6分钟B.1~2分钟C.2~7分钟D.1~3分钟E.2~4分钟【答案】D47、单核-吞噬细胞系统和树突状细胞属于A.组织细胞B.淋巴细胞C.辅佐细胞D.杀伤细胞E.记忆细胞【答案】C48、男,30岁,受轻微外伤后,臀部出现一个大的血肿,患者既往无出血病史,其兄有类似出血症状;检验结果:血小板300×10A.ITPB.血友病C.遗传性纤维蛋白原缺乏症D.DICE.Evans综合征【答案】B49、下列关于椭圆的叙述:①平面内到两个定点的距离之和等于常数的动点轨迹是椭圆;②平面内到定直线和直线外的定点距离之比为大于1的常数的动点轨迹是椭圆;③从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆的另一个焦点;④平面与圆柱面的截面是椭圆。正确的个数是()A.0B.1C.2D.3【答案】C50、ELISA是利用酶催化反应的特性来检测和定量分析免疫反应。ELISA中常用的固相载体A.聚苯乙烯B.尼龙网C.三聚氧胺D.硝酸纤维膜E.醋酸纤维膜【答案】A51、原位溶血的场所主要发生在A.肝脏B.脾脏C.骨髓D.血管内E.卵黄囊【答案】C52、女性,26岁,2年前因头昏乏力、面色苍白就诊。粪便镜检找到钩虫卵,经驱虫及补充铁剂治疗,贫血无明显改善。近因症状加重而就诊。体检:中度贫血貌,肝、脾均肋下2cm。检验:血红蛋白85g/L,网织红细胞5%;血清胆红素正常;骨髓检查示红系明显增生,粒红比例倒置,外铁(+++),内铁正常。B超显示胆石症。最可能的诊断是A.缺铁性贫血B.铁幼粒细胞贫血C.溶血性贫血D.巨幼细胞贫血E.慢性炎症性贫血【答案】C53、皮内注射DNP引起的DTH反应明显降低是因为()A.接受抗组胺的治疗B.接受大量X线照射C.接受抗中性粒细胞血清治疗D.脾脏切除E.补体水平下降【答案】B54、男,30岁,受轻微外伤后,臀部出现一个大的血肿,患者既往无出血病史,其兄有类似出血症状;检验结果:血小板300×10A.ITPB.血友病C.遗传性纤维蛋白原缺乏症D.DICE.Evans综合征【答案】B55、Westgard质控处理规则的应用可以找出的误差是A.系统误差B.随机误差C.系统误差和随机误差D.偶然误差E.以上都不是【答案】C56、疑似患有免疫增殖病,但仅检出少量的M蛋白时应做A.血清蛋白区带电泳B.免疫电泳C.免疫固定电泳D.免疫球蛋白的定量测定E.尿本周蛋白检测【答案】C57、一级结构为对称性二聚体的是A.因子ⅢB.因子ⅤC.因子ⅠD.因子ⅩE.因子Ⅸ【答案】C58、患者,男,28岁,患尿毒症晚期,拟接受肾移植手术。移植器官的最适供者是A.父母双亲B.同卵双生兄弟C.同胞姐妹D.同胞兄弟E.无关个体【答案】B59、纤溶酶的主要作用是水解()A.因子ⅤB.因子ⅡaC.因子ⅫD.因子Ⅰ和ⅠaE.因子Ⅳ【答案】D60、有人称之谓“打扫战场的清道夫”的细胞是A.淋巴细胞B.中性粒细胞C.嗜酸性粒细胞D.单核细胞E.组织细胞【答案】D大题(共15题)一、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师1】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与0相加,0与0相加,负数与0相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是0,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师2】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?……讨论过程中,学生提出利用具体情境来解释运算的合理性……第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”……分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。二、严谨性与量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性相结合”教学原则的内涵(3分);(2)初中数学教学中“负负得正”运算法则引入的方式有哪些?请写出至少两种(6分);(3)在初中“负负得正”运算法则的教学中,如何体现“严谨性与量力性相结合”的教学原则?(6分)【答案】本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运算法则,从而体现“严谨性与量力性相结合”的教学原则。三、《义务教育教学课程标准(2011年版)》关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理——平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。(12分)【答案】本题主要以初中数学教学中的重要内容之一“平行四边形的性质定理”为例,平行四边形的性质定理的基础知识,初中数学课程内容、课程标准及实施建议,教学过程的基本要素及教学方法的选择,教学设计中的教学目标、教学过程及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以及教学技能的基本知识和基本技能。(1)新课标倡导三维教学目标,知识与技能目标、过程与方法目标、情感态度与价值观目标。知识与技能目标,是对学生学习结果的描述,即学生同学习所要达到的结果,又叫结果性目标。这种目标一般有三个层次的要求:学懂、学会、能应用。过程与方法目标,是学生在教师的指导下,如何获取知识和技能的程序和具体做法,是过程中的目标,又叫程序性目标。这种目标强调三个过程:做中学、学中做、反思。情感态度与价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验,又叫体验性目标。它的层次有认同、体会、内化三个层次。知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体,情感态度与价值观目标对其他目标有重要的促进和优化作用。(2)让学生发现平行四边形性质的教学流程,可以从不同角度进行设计,如“观察—猜想—验证—归纳”,“动手操作—小组讨论—归纳总结”等,但重要的是让学生在学习过程中进行主动学习,教师只是起到引导的作用,充分体现“学生是主体,教师是主导”的教学理念。(3)平行四边形关于边、角的性质定理,即平行四边形的对边以及对角相等,这一定理的证明是通过证明三角形全等来证明对边、对角相等来进行的。注意在平行四边形性质证明的教学流程中,务必使学生领悟证明过程中所用到的转化思想与方法。四、在学习《有理数的加法》一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。五、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,……,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,…1,-1,1,-1,1,…-4,2,-1,…1,1,l,1,1,…由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】六、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】七、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要.(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的.同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背.在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性.八、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为17只,总的腿数应为34条,但现在有48条腿,造成腿的数目不够是由于小兔的数目是O,每有一只小兔便会增加两条腿,敌应有(48—17×2)÷2=7只小兔。相应地,小鸡有10只。解法二:用代数方法:可设有x只小鸡,y只小兔,则x+y=17①;2x+4y=48②。将第一个方程的两边同乘以-2加到第二个方程中去,得x+y=17;(4-2)y=48-17x2。解上述第二个方程得y=7,把y=7代入第一个方程得x=10。所以有10只小鸡.7只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10分)(2)试说明这两种算法的共同点。(10分)【答案】(1)解法一所体现的算法是:S1假设没有小兔.则小鸡应为n只;S2计算总腿数为2n只;S3计算实际总腿数m与假设总腿数2n的差值m-2n;S4计算小兔只数为(m-2n)÷2;S5小鸡的只数为n-(m-2n)÷2;解法二所体现的算法是:S1设未知数S2根据题意列方程组;S3解方程组:S4还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。九、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要.(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的.同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背.在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性.一十、下面是某位老师引入“负数”概念的教学片段。师:我们当地7月份的平均气温是零上28℃,l月份的平均气温是零下3℃,问7月份的平均气温比1月份的平均气温高几度如何列式计算生:用零上28℃减去零下3℃,得到的答案是31℃。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上28℃,我们常说成28℃,可用28表示,但是零下3℃不能说成3℃呀!也就不能用3表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来表示零下3c℃。这时,零下3℃就可写成-3℃,-3就是负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】(1)在这段教学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识——负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素。①学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让学生在情境中领会概念产生的必要性。②内容的实质性。引入数学概念时,教师所选用的实例要反映概念的本质,不要让太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。③数量的适量性。在引入概念时,教师一般要举出一些例子,以便加深学生对概念的初步认识。④实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作为例子。一十一、严谨性与量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性相结合”教学原则的内涵(3分);(2)初中数学教学中“负负得正”运算法则引入的方式有哪些?请写出至少两种(6分);(3)在初中“负负得正”运算法则的教学中,如何体现“严谨性与量力性相结合”的教学原则?(6分)【答案】本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度技术秘密保密合同2篇
- 二零二四年度软件许可合同许可模块与技术支持2篇
- 消化道出血临床护理
- 科学计算语言Julia及MWORKS实践 课件全套 1-科学计算与系统建模仿真应用场景-31-四旋翼无人机的路径跟踪
- 学校课外活动计划
- 教师计算机表格培训
- 二零二四年度研发合作与技术开发合同2篇
- 运动损伤修复与治疗
- 玉林师范学院《普通硅酸盐工业检测实验》2023-2024学年第一学期期末试卷
- 玉林师范学院《分子生物学实验》2021-2022学年第一学期期末试卷
- 移动GIS原理与系统开发智慧树知到答案2024年南京邮电大学
- 新版外国人永久居住身份证考试试题
- 软件研发部绩效考核方案三篇
- 中小学基于“生活教育”理念下的“生活课堂”建构实践研究(六稿)公开课教案教学设计课件案例测试练习卷题
- 2024至2030年中国风光储一体化市场未来动向及营销前景研究报告
- 2024南方出版传媒股份限公司招聘112人高频考题难、易错点模拟试题(共500题)附带答案详解
- 中国企业出海服务指南(白皮书)
- 2024新苏教版一年级数学上册第五单元第2课《十几加几(不进位)和相应的减法(不退位)》教案
- 8安全记心上 第一课时 平安出行(教学设计)-部编版道德与法治三年级上册
- 工会资金采购管理办法
- 中核汇能笔试题目
评论
0/150
提交评论