版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
追及与相遇问题第1页,共43页,2023年,2月20日,星期日第2页,共43页,2023年,2月20日,星期日第3页,共43页,2023年,2月20日,星期日追及与相遇问题第4页,共43页,2023年,2月20日,星期日1、追及与相遇问题的实质:2、理清三大关系:
两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
研究的两物体能否在相同的时刻到达相同的空间位置的问题。时间关系、速度关系、位移关系。3、巧用一个条件:第5页,共43页,2023年,2月20日,星期日
1.物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,认真审题,挖掘题中的隐含条件,在头脑中建立起一幅物体运动关系的图景。
2.数学分析法:设相遇时间为t,根据条件列方程,得到关于t的方程(通常为一元二次方程),用判别式进行讨论,若>0,即有两个解,说明可以相遇两次;若=0,说明刚好追上或相遇;若<0,说明追不上或不能相碰。
3.图象法:将两者的速度—时间图象在同一坐标系中画出,然后利用图象求解。
4.相对运动法:巧妙地选取参照系,然后找两物体的运动关系。
解答追及、相遇问题常用的方法第6页,共43页,2023年,2月20日,星期日(1)速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0即速度相等时,两物体相距最远为x0+x③t=t0以后,后面物体与前面物体间距离减小④能追及且只能相遇一次匀速追匀减速匀加速追匀减速第7页,共43页,2023年,2月20日,星期日1.在解决追及相遇类问题时,要紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式,另外还要注意最后对解的讨论分析。2.分析追及、相遇类问题时,要注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”“恰好”“最多”“至少”等,往往对应一个临界状态,满足相应的临界条件。解题思路分析两物体运动过程画运动示意图找两物体的关系式列方程求解第8页,共43页,2023年,2月20日,星期日(1)汽车一定能追上自行车吗?若能追上,汽车经多长时间追上?追上时汽车的瞬时速度多大?例3一辆汽车以3m/s2的加速度开始启动的瞬间,另一辆以6m/s的速度做匀速直线运动的自行车恰好从汽车的旁边通过.(2)当v汽<v自时,两者距离如何变化?当v汽>v自时,两者距离如何变化?汽车追上自行车前多长时间与自行车相距最远?此时的距离是多大?(3)画出两车运动的v-t图象,并试着用图象法解上述两问题.第9页,共43页,2023年,2月20日,星期日例3一辆汽车以3m/s2的加速度开始启动的瞬间,解:汽车:第10页,共43页,2023年,2月20日,星期日例3一辆汽车以3m/s2的加速度开始启动的瞬间,另一辆以6m/s的速度做匀速直线运动的自行车恰好从汽车的旁边通过.(1)汽车一定能追上自行车吗?若能追上,汽车经多长时间追上?追上时汽车的瞬时速度多大?(2)当v汽<v自时,两者距离如何变化?当v汽>v自时,两者距离如何变化?汽车追上自行车前多长时间与自行车相距最远?此时的距离是多大?解:汽车:乘客:第11页,共43页,2023年,2月20日,星期日第12页,共43页,2023年,2月20日,星期日(3)画出两车运动的v-t图象,并试着用图象法解上述两问题.第13页,共43页,2023年,2月20日,星期日练一练、甲.乙两车在平直公路上比赛,某一时刻,乙车在甲车前方L1=11m处,乙车速度v乙=60m/s,甲车速度v甲=50m/s,此时乙车离终点线尚有L2=600m,如图所示.若甲车加速运动,加速度a=2m/s2,乙车速度不变,不计车长.求:(1)经过多长时间甲.乙两车间距离最大,最大距离是多少?
(2)经过多长时间甲乙两车相遇?(3)试通过计算说明到达终点前甲车能否超过乙车?第14页,共43页,2023年,2月20日,星期日(2)速度大者追速度小者类型图象说明匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若x=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若x<x0,则不能追及,此时两物体最小距离为x0-x③若x>x0,则相遇两次,设t1时刻x1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀速追匀加速匀减速追匀加速第15页,共43页,2023年,2月20日,星期日
说明:①表中的x是开始追及以后,后面物体因速度大而比前面物体多运动的位移;
②x0是开始追及以前两物体之间的距离;
③t2-t0=t0-t1;
④v1是前面物体的速度,v2是后面物体的速度。第16页,共43页,2023年,2月20日,星期日解:汽车:乘客:此时人和车相距最近此过程:x人=vt=4×2m=8m第17页,共43页,2023年,2月20日,星期日在一条平直的公路上,乙车以10m/s的速度匀速行驶,甲车在乙车的后面做初速度为15m/s,加速度大小为0.5m/s2的匀减速运动,则两车初始距离L满足什么条件时可以使:(1)两车不相遇;(2)两车只相遇一次;(3)两车能相遇两次(设两车相遇时互不影响各自的运动)第18页,共43页,2023年,2月20日,星期日例1:一辆汽车在十字路口等候绿灯,当绿灯亮起时汽车以3m/s2的加速度开始行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后面超过汽车。试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?第19页,共43页,2023年,2月20日,星期日甲、乙两车在一平直道路上同向运动,其v-t图象如图示,图中△OPQ和△OQT的“面积”分别为x1和x2(x2>x1)。初始时,甲车在乙车前方x0处()A.若x0=x1+x2,两车不会相遇B.若x0<x1,两车相遇2次C.若x0=x1,两车相遇1次D.若x0=x2,两车相遇1次ABC第20页,共43页,2023年,2月20日,星期日分析:汽车追上自行车之前,
v汽<v自时△x变大
v汽=v自时△x最大
v汽>v自时△x变小解法一物理分析法两者速度相等时,两车相距最远。(速度关系)
v汽=at=v自∴t=v自/a=6/3=2s△x=v自t-at2/2=6×2-3
×22/2=6m第21页,共43页,2023年,2月20日,星期日解法二用数学求极值方法来求解设汽车在追上自行车之前经过t时间两车相距最远∵△x=x1-x2=v自t-at2/2(位移关系)∴△x=6t
-3t2/2由二次函数求极值条件知t=-b/2a=6/3s=2s时,△x最大∴△xm=6t-3t2/2=6×2-3
×22/2=6m第22页,共43页,2023年,2月20日,星期日解法三用相对运动求解更简捷
选匀速运动的自行车为参考系,则从运动开始到相距最远这段时间内,汽车相对参考系的各个物理量为:初速度v0=v汽初-v自=0-6=-6m/s末速度vt=v汽末-v自=6-6=0加速度a=a汽-a自=3-0=3m/s2∴相距最远x===-6mvt2-v022a-622×3第23页,共43页,2023年,2月20日,星期日解法四用图象求解1)自行车和汽车的v-t图象如图v/(ms-1)v′60t/st′tV汽V自由于图线与横坐标轴所包围的面积表示位移的大小,所以由图上可以看出在相遇之前,在t时刻两车速度相等时,自行车的位移(矩形面积)与汽车位移(三角形面积)之差(即斜线部分)达最大,所以t=v自/a=6/3=2s2)由图可看出,在t时刻以后,由v自线与v汽线组成的三角形面积与标有斜线的三角形面积相等时,两车的位移相等(即相遇)。所以由图得相遇时,
t′=2t=4sv′=2v自=12m/s第24页,共43页,2023年,2月20日,星期日
2.什么时候汽车追上自行车,此时汽车的速度是多少?解:汽车追上自行车时,二车位移相等(位移关系)则vt′=at′2/26×t′=at′2/2,t′=4sv′=at′=3×4=12m/s
思考:若自行车超过汽车2s后,汽车才开始加速。那么,前面的1、2两问如何?第25页,共43页,2023年,2月20日,星期日例2:A火车以v1=20m/s速度匀速行驶,司机发现前方同轨道上相距100m处有另一列火车B正以v2=10m/s速度与A火车同方向匀速行驶,A车立即做加速度大小为a的匀减速直线运动。要使两车不相撞,a应满足什么条件?第26页,共43页,2023年,2月20日,星期日两车恰不相撞的条件是:两车速度相同时相遇.由A、B速度关系:由A、B位移关系:方法一:物理分析法第27页,共43页,2023年,2月20日,星期日v/ms-1BAt/so10t020方法二:图象法第28页,共43页,2023年,2月20日,星期日
代入数据得
若两车不相撞,其位移关系应为其图像(抛物线)的顶点纵坐标必为正值,故有方法三:二次函数极值法第29页,共43页,2023年,2月20日,星期日
代入数据得∵不相撞∴△<0方法四、判别式法:第30页,共43页,2023年,2月20日,星期日
以B车为参照物,A车的初速度为v0=10m/s,以加速度大小a减速,行驶x=100m后“停下”,末速度为vt=0
以B为参照物,公式中的各个量都应是相对于B的物理量.注意物理量的正负号.方法五:相对运动法第31页,共43页,2023年,2月20日,星期日例3、一车从静止开始以1m/s2的加速度前进,车后相距x0为25m处,某人同时开始以6m/s的速度匀速追车,能否追上?如追不上,求人、车间的最小距离。一、数学分析法:依题意,人与车运动的时间相等,设为t,当人追上车时,两者之间的位移关系为:x车+x0=x人即:at2/2+x0=v人t由此方程求解t,若有解,则可追上;若无解,则不能追上。代入数据并整理得:t2-12t+50=0△=b2-4ac=122-4×50×1=-56<0所以,人追不上车。x0v=6m/sa=1m/s2第32页,共43页,2023年,2月20日,星期日二、物理分析法在刚开始追车时,由于人的速度大于车的速度,因此人车间的距离逐渐减小;当车速大于人的速度时,人车间的距离逐渐增大。因此,当人车速度相等时,两者间距离最小。at′=v人t′=6s在这段时间里,人、车的位移分别为:x人=v人t=6×6=36mx车=at′2/2=1×62/2=18m△x=x0+x车-x人=25+18-36=7m二、数学分析法△s=1/2×1×t2+25-6t=1/2×1×t2-6t+25△=-14<0△st第33页,共43页,2023年,2月20日,星期日
例4.
在平直公路上有两辆汽车A、B平行同向行驶,A车以vA=4m/s的速度做匀速直线运动,B车以vB=10m/s的速度做匀速直线运动,当B车行驶到A车前x=7m处时关闭发动机以2m/s2的加速度做匀减速直线运动,则从此时开始A车经多长时间可追上B车?分析:画出运动的示意图如图所示:vA=4m/svB=10m/s7m追上处a=-2m/s2A车追上B车可能有两种不同情况:B车停止前被追及和B车停止后被追及。究竟是哪一种情况,应根据解答结果,由实际情况判断。第34页,共43页,2023年,2月20日,星期日解答:设经时间t追上。依题意:vBt+at2/2+x=vAt10t-t
2+7=4tt=7st=-1s(舍去)B车刹车的时间t′=vB/a=5s显然,B车停止后A再追上B。B车刹车的位移xB=vB2/2a=102/4=25mA车的总位移xA=xB+x=32m∴t=xA/vA=32/4=8s思考:若将题中的7m改为3m,结果如何?答:甲车停止前被追及错解:4t=7+10t–½×2t2
t=-1(舍)t=7第35页,共43页,2023年,2月20日,星期日例5.汽车正以10m/s的速度在平直公路上做匀速直线运动,突然发现正前方10m处有一辆自行车以4m/s的速度同方向做匀速直线运动,汽车立即关闭油门,做加速度为6m/s2的匀减速运动,问:汽车能否撞上自行车?若汽车不能撞上自行车,汽车与自行车间的最近距离为多少?汽车在关闭油门减速后的一段时间内,其速度大于自行车速度,因此,汽车和自行车之间的距离在不断的缩小,当这距离缩小到零时,若汽车的速度减至与自行车相同,则能满足汽车恰好不碰上自行车v汽=10m/sv自=4m/s10m追上处a=-6m/s2分析:画出运动的示意图如图所示第36页,共43页,2023年,2月20日,星期日物理分析法解:(1)汽车速度减到4m/s时运动的时间和发生的位移分别为t=(v自-v汽)/a=(4-10)/(-6)s=1sx汽=(v自2-v汽2)/2a=(16-100)/(-12)=7m这段时间内自行车发生的位移x自=v自t=4m因为x0+x自>x汽所以,汽车不能撞上自行车。汽车与自行车间的最近距离为△x=x0+x自-x汽=(10+4-7)m=7m数学分析法△x=x0+x自-x汽=(10+4t)-(10t-1/2×6t2)=3t2-6t+10△=-84<0,无解不相遇△st第37页,共43页,2023年,2月20日,星期日第38页,共43页,2023年,2月20日,星期日典例二追及类问题【例2】摩托车先由静止开始以25/16m/s2的加速度做匀加速运动,后以最大行驶速度
25m/s匀速运动,追赶前方以15m/s的速度同向匀速行驶的卡车。已知摩托车开始运动时与卡车的距离为1000m,则:
(1)追上卡车前二者相隔的最大距离是多少?
(2)摩托车经过多少时间才能追上卡车?
【解析】(1)对摩托车由静止开始匀加速至vm=25m/s,用时t1=vm/a=16s。发生位移x1=vm2/(2a)=200m,显然未追上卡车。则追上卡车前二者共速时,间距最大(如图所示),即x=x0+x卡-x摩①
x摩=v2/(2a)
②
x卡=v·v/a③
由①②③联立得x=1072m。第39页,共43页,2023年,2月20日,星期日
1.通过运动的分析,找隐含条件
2.利用二次函数求极值的方法
3.因追及相遇问题至少涉及两个物体的运动问题,对描述它们的物理量必须选同一参考系。基本思路是:①分别对两物体研究②画出运动过程示意图③列出方程④找出时间关系⑤解出结果,必要时进行讨论(2)追上时,由运动情景图(如图所示)分析可知,
x摩′=x卡′+x0
vm2/(2a)+vm(t-t1)=x0+vt
解得t=120s。【答案】(1)1072m(2)120s第40页,共43页,2023年,2月20日,星期日A、B两辆汽车在笔直的公路上同向行驶。当B车在A车前84m处时,B车速度为4m/s,且正以2m/s2的加速度做匀加速运动;经过一段时间后,B车加速度突然变为零。A车一直以20m/s的速度做匀速运动。经过12s后两车相遇。问B车加速行驶的时间是多少?【答案】6s第41页,共43页,2023年,2月20日,星
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大理石瓷砖购销合同
- 购房抵押合同
- 宣传片拍摄合同
- 公司股权转让协议合同书
- 即时适应性干预在身体活动促进中应用的范围综述
- 植保无人机飞行参数对油茶授粉雾滴沉积分布及坐果率的影响
- 2025年昌都货运从业资格证好考吗
- 2025年粤教沪科版九年级地理上册阶段测试试卷
- 智能家居产品合作开发合同(2篇)
- 2025年宜宾职业技术学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 2024年新疆维吾尔自治区成考(专升本)大学政治考试真题含解析
- 煤矿复工复产培训课件
- 三年级上册口算题卡每日一练
- 《性激素临床应用》课件
- 眼科疾病与视觉健康
- 2024年九省联考高考数学卷试题真题答案详解(精校打印)
- 洗涤塔操作说明
- 绘本分享《狐狸打猎人》
- 撤销因私出国(境)登记备案国家工作人员通知书
- (39)-总论第四节针灸处方
- 《民航服务沟通技巧》教案第10课儿童旅客服务沟通
评论
0/150
提交评论