一种高性能监测测向处理平台的设计和实现-设计应用_第1页
一种高性能监测测向处理平台的设计和实现-设计应用_第2页
一种高性能监测测向处理平台的设计和实现-设计应用_第3页
一种高性能监测测向处理平台的设计和实现-设计应用_第4页
一种高性能监测测向处理平台的设计和实现-设计应用_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档-下载后可编辑一种高性能监测测向处理平台的设计和实现-设计应用

无线电频谱作为一种自然资源,在一个相对的时间和空间内,可提供的使用范围是有限的。因此,加强无线电管理,保障无线电信息及时、快速、安全可靠地传递,对促进经济的发展,国防的巩固,军事指挥的顺畅有着重要的作用。无线电监测测向是无线电频谱管理工作中的一个重要任务。高速度、高性能、自动化的监测测向系统,是现代无线电频谱管理和信息战争的必然要求。SMS(短消息)以其通信成本低、频谱利用率高、保密性能好、抗干扰能力强等优点正好满足了无线电监测测向的自动化要求。本文综合考虑目前数字处理终端与不同类型CPU(主机)的接口与结构关系的优缺点,终选择了基于CompactPCI体系的高性能监测测向处理平台设计方案。

1系统结构

本文所述的平台结构具有灵活性和开放性的特点,其主要工作原理为:大规模FPGA用于接收多通道高速采样数据流,完成必要的预处理;主控FPGA依据每路信号的处理要求仲裁各路FPGA/DSP的片选信号,同步启动进行实时处理;多片实时处理DSP和主控FPGA紧耦合构成并行处理系统的;通过局部总线接口送入中央处理CPU作进一步分析处理,完成信息的综合存储管理等[3].系统结构框图如图1所示。

2具体方案

2.1高速数据采集

高速数据采集是高性能监测测向处理平台研究[4]的首要问题。其设计与实现,一方面由需求引导,另一方面也要求对系统各个环节有整体的把握。合理设计模拟信号调理电路、高稳时钟产生电路、高速数据流传输路径、合理的时序及控制逻辑,并充分考虑信号完整性和电磁兼容等问题,是设计一个高性能数据采集模块的基本保障。

对于本文所关注的高速数据采集而言,若直接采用满足采样率设计要求的单片ADC芯片实现,会带来动态范围不够、缺乏灵活性和成本较高、风险较大等问题。而如果选择采用多片采样率较低的芯片用交替采样的方法来实现高速采样的方案,则电路较复杂,而且多片ADC之间延时的不一致和增益的不匹配会使采样后的信号难以无失真的复合。鉴于此,本文所述的高速数据采集设计思路是:模块化设计具有适当采样率的A/D板,基于频带分割和同步触发的宽带、大动态数据采集方案。本技术架构在硬件设计上具有模块化、可扩展的特色,在性能上具有等效采样率高及采样带宽不受ADC及调理电路限制的优点。采集模块工作原理如图2所示。

ADC,Analog-to-DigitalConverter的缩写,指模/数转换器或者模拟/数字转换器。真实世界的模拟信号,例如温度、压力、声音或者图像等,需要转换成更容易储存、处理和发射的数字形式。模/数转换器可以实现这个功能,在各种不同的产品中都可以找到它的身影。

高速ADC是大功耗器件,通常更高的采样率将消耗更多的功耗。在使用多ADC多通道的系统中,耗散问题则更为严重。Linear推出低功耗14bit、125MS/sADCLTC2261,该器件功耗127mW,用1.8V低压模拟电源工作,提供73.4dB的信噪比和85dB的无寄生动态范围。0.17psRMS的超低孔径抖动允许其以卓越噪声性能进行中频欠采样。创新性数字输出可以设置为全速率CMOS、双数据速率CMOS或双数据速率LVDS.双数据速率数字输出允许数据在时钟的上升沿和下降沿发送,从而将所需数据线数量减少了一半。另外,对高速信号进行高分辨率的数字化处理需审慎设计时钟电路,就LTC2261和LTC其他高速14bit系列ADC所表现出的性能看,在高速采样时,0.5ps的抖动就可对SNR产生明显影响。由公式(1)可以看出,采样速率越高、转换位数越多,对A/D采样时钟的抖动指标要求就越高。

就LTC2261来说,10ps的时钟抖动将在输入频率为1MHz时产生0.8dB的SNR损耗。而在输入频率为120MHz时,SNR将被降低至41.1dB.这给高精度时钟电路设计带来了挑战,通常只有选择昂贵的高性能压控晶体振荡器才能保证应有的性能。而美国国家半导体公司提供的超低噪声时钟抖动滤波器LMK04000系列提供了另外一种低成本的选择。该滤波器采用简洁的外置晶体及级联PLLatinum架构,12kHz~20MHz的RMS抖动为150fs,100Hz~20MHz抖动为200fs,时钟输出信号为LVPECL/2VPECL、LVDS和LVCMOS,可以有效改善系统的性能及准确度。其特点是内置高性能的级联锁相环(共2个)、低噪声晶体振荡器、高性能的内置压控振荡器以及低噪声分频器和驱动器。个锁相环有2个不同配置可供选择,可以选用简单的外置晶体振荡器或压控晶体振荡器模块执行滤除抖动功能。第二个锁相环可利用内置压控振荡器产生低噪声时钟。

2.2高速高流量数据存储

FPGA(Field-ProgrammableGateArray),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。

采样速率及分辨率越高,则转换后的数据流传输带宽越大,对后续数据传输的实时调度和连续存储的要求就相应提高。现在通常采用的方法是通过扩展位宽以降低传输速率[4-6].但是,如果通过扩展位宽实现高速数据流的实时海量数据存储必将增大设备规模,对存储深度或者持续采集时间的限制也是非常突出的。本文对存储容量、访问速度、存储区管理的灵活性进行了研究,结合FLASH存储阵列,设计实现了基于FLASH存储器的高速高流量数据存储卡。该存储卡符合CPCI6U标准,具有模块化、标准化、易扩展以及高稳定性等特点,解决了数字后处理过程中在编码分析和协议解析阶段对连续无失真采样数据的实时存储难题。其主要研究内容包括:采用FPGA进行高速信号的调度处理和缓存,以解决高速数字接口的问题;采用超大规模FPGA实现对存储区的可在线配置灵活管理,以实现整个模块的高集成度、高可靠性、存储区管理灵活(支持冗余备份)等目标。由此实现的海量数据存储子系统结构采用标准化、模块化设计,具有高速率、低功耗、可移植、易扩展的特性,可以满足不同任务的需要。

图3所示是本文设计的基于CPCI标准的大存储容量、高传输带宽的通用数据存储板。板载1片StratixIIIE与2片CycloneIIIFPGA以及96片NANDFLASH.StratixIIIE是存储板数据接收和分发的枢纽,该器件可应对存储器较多的应用,为采用乒乓结构对数据进行缓存提供资源,主要完成以下功能:提供高达1Gb/s的差分传输速率;通过PCI接口芯片PCI9656连接到PCI总线上,实现64bit的局部总线;通过J4/J5实现板间自定义的高速差分数据传输。2片低成本CycloneIII分别连接48片NAND,实现数据的高速分发和NAND阵列的二级管理。在高速数据存储卡的设计过程中,打通主机与存储模块之间的数据传输通道是调试的重点,这涉及FPGA中PCI本地端匹配逻辑的设计。一个典型的基于状态机设计的匹配逻辑时序如图4所示。

2.3紧耦合和支持灵活配置的并行处理模块

主处理平台的计算能力往往构成了获取宽带信号时频域完整信息的瓶颈。本文针对一体化设计的具体需求探讨了一种紧耦合和支持灵活配置的并行处理硬件架构来解决这一问题[3].信号处理不同模块有不同的运算特点,设计过程中,不同的模块需要选择在不同的器件中完成[7].FPGA设置灵活,但是主频很难做高,通常只有几百MHz,这与DSP的几千MHz甚至于GHz相去甚远。因而,对复杂的运算和协议分析适合采用DSP处理,而FPGA则偏重于计算量大、运算结构简单的并行处理,在诸如数字下变频(DDC)、匹配滤波器、FFT的设计中具有更好的性能,而且开发方便。同时,要充分体现软件无线电的思想,达到通用性与一体化的要求,可重配置技术的突破是必须完成的任务。FPGA具有的硬件可重构性是GPP、DSP所没有的功能,所以本文采用基于大规模FPGA+高性能DSP的主处理平台设计方案也是保证系统结构具有可重配置特性的前提。同时,为了保障与本总线式结构平台的各个组成部分有好的通联性,并考虑到系统性能和处理能力的可扩展性,本模块采用CPCI作为互联控制总线,设计遵循CPCI6U规范,并预留有SRIO(J3)、高速自定义IO(J4、J5)作为模块之间或板级芯片之间高速数据流共享和协同处理的通道。该并行处理模块硬件功能相对独立,可方便功能需要的裁剪定制。同时,这些特征也决定了硬件平台具有较长的使用周期,节约了研发经费。并行处理模块原理框图如图5所示。

本并行处理模块采用TI全新高性能1.2GHz单核DSPTMS320C6455作为并行处理的,为同时执行多通道处理任务和应对同时执行多个软件的高强度、高性能应用提供资源。C6455在统一器件上完美结合了高带宽外设集成(千兆以太网MAC)、SerialRapidIO(SRIO)、运行速率553MHz的DDR2存储器接口以及更大的存储器(L2存储器达2MB)。这些为提高常用算法的处理效率、提高系统扩展能力提供了原始

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论