2016年河南省普通高等招生全国统一考试猜题卷(二)数学(理)_第1页
2016年河南省普通高等招生全国统一考试猜题卷(二)数学(理)_第2页
2016年河南省普通高等招生全国统一考试猜题卷(二)数学(理)_第3页
2016年河南省普通高等招生全国统一考试猜题卷(二)数学(理)_第4页
2016年河南省普通高等招生全国统一考试猜题卷(二)数学(理)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

绝密★启用前普通高等招生全国统一考试猜题卷(二)理科数学本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1.答题前,考生在答题纸上务必用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码的准考证号、姓名和科目,2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z=QUOTE=··········································································()A.-2+iB.iC.2-iD.-i:2.已知集合M=QUOTE,N=QUOTE,则MUN=·································()A.[-2,4)B.(-2,4)C.(o,2)D.(o,2]3.采用系统抽样方法从1000人中抽取50人做问卷调查,为此将他们随机编号1,…,1000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为8,抽到的50入中,编号落人区间[1,400]的人做问卷A,编号落入区间[401,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为·······()A.12B.13C.14D.154.已知命题p:函数y=ln(x2+3)+QUOTE的最小值是2;命题q:x>2是x>l的充分不必要条件.则下列命题为真命题的是··············································································()A.pQUOTEqB.¬pQUOTEqC.¬pQUOTEqD.pQUOTEq5.已知点A是抛物线C1:y2=2px(p>0)与双曲线C2:QUOTE(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1,的焦点的距离为p,则双曲线C2的离心率等于·····································()A.QUOTEB.QUOTEC.QUOTED.QUOTE6.QUOTE的展开式中含x的正整数指数幂的项数是········································()A1B.2C.3D.4数学试题(二)第1页(共8页)7.设{an}是等差数列,下列结论中正确的是··················································()A.若a2+a5>0,则a1+a2>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a3>QUOTE-D.若a1<0,则(a2-a1)(a4-a2)>08.如图,正四棱锥P-ABCD庇面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,如果VP-ABCD=QUOTE,则球O的表面积是····································()A.4QUOTEB.8QUOTEC.12QUOTED.16QUOTE3r+y-2≤0,9.变量x,y满足线性约束条件QUOTE,目标函数z=kx-y仅在点(O,2)取得最小值,则k的取值范围是·········································································()A.k<-3B.k>lC.-l<k<1D.-3<k<l10.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为·······················()A.QUOTEB.QUOTEC.QUOTED.QUOTE11.已知M是△ABC内一点(不含边界),且QUOTE·QUOTE=2QUOTE,∠BAC=300,若△MBC,△MCA,△MAB的面积分别为x,y,z,记f(x,y,z)=QUOTE,则f(x,y,z)的最小值为··································()A.26B.32C.36D.4812.已知集合M=QUOTE,若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“商高线”.给出下列四个集合:①M=QUOTE;②M=QUOTE;③M=QUOTE;④M=QUOTE.其中是“商高线”的序号是······························································()A.①②B.②③C.①④D.②④数学试题(二)第2页(共8页)绝密★启用前普通高等招生全国统一考试猜题卷(二)理科数学第Ⅱ卷(非选择题共90分)注意事项:1.答题前,考生先在答题纸上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共6页,请用直径0.5毫米黑色签字笔在答题纸上各题的答题区域内作答,在试题卷上作答无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答,第22~24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输入x=0.1,则输出的m的值是__________________.14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为________________.15.关于函数f(x)=2(sinx—cosx)cosx的四个结论:P1:最大值为QUOTE;P2:把函数f(x)=QUOTE的图象向右平移QUOTE个单位后可得到函数f(x)=2(sinx一cosx)cosx的图象;P3:单调递增区间为QUOTE,k∈Z;P4:图象的对称中心为QUOTE,k∈z.其中正确的结论有_________个.16.已知数列{an}满足a1=QUOTE,an-1-an=QUOTE(n≥2),则该数列的通项公式为_________________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知角A=QUOTE,sinB=3sinc.(1)求tanC的值;(2)若a=QUOTE,求△ABC的面积.数学试题(二)第3页(共8页)18.(本小题满分12分)某青少年研究中心为了统计某市青少年(18岁以下)2015年春节所收压岁钱的情况进而研究青少年的消费去向,随机抽查了该市60名青少年所收压岁钱的情况,得到如下数据统计表(图①):已知“超过2千元的青少年”与“不超过2千元的青少年”人数比恰好为2:3.(1)试确定x,y,p,q的值,并补全频率分布直方图(图②).(2)该机构为了进一步了解这60名青少年压岁钱的消费去向,从“压岁钱超过2千元的青少年”、“压岁钱不超过2千元的青少年”中用分层抽样的方法确定10人,若需从这10人中随机选取3人进行问卷调查.设S为选取的3人中“压岁钱超过2千元的青少年”的人数,求ɛ的分布列和数学期望.(3)若以颇率估计概率,从该市青少年中随机抽取15人进行座谈,若15人中“压岁钱超过2千元的青少年”的人数为η,求η的期望.数学试题(二)第4页(共8页)19.(本小题满分12分)如图所示的多面体中,四边形ABCD是菱形,ED∥FB,ED⊥平面ABCD,AD=BD=2,BF=2DE=2QUOTE(1)求证:AE⊥CF;(2)求二面角A-FC-E的余弦值.20.(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点QUOTE,譬在椭圆C上.(1)求椭圆C的方程5(2)设P是椭圆C长轴上的一个动点,过P作斜率为QUOTE的直线L交椭圆C于A,B两点,求证:QUOTE为定值,数学试题(二)第5页(共8页)21.(本小题满分12分)已知函数f(x)=-x3+x2(x∈R),g(x)满足gˊ(x)=QUOTE(a∈R,x>0),且g(e)=a,e为自然对数的底数.(1)已知h(x)=e1--xf(x),求h(x)在(1,h(1))处的切线方程;(2)若存在x∈[1,e],使得g(x)≥一x2+(a+2)x成立,求a的取值范围;(3)设函数F(x)=QUOTE,O为坐标原点,若对于y=F(x)在x≤一1时的图象上的任一点P,在曲线y=F(x)(x∈R)上总存在一点Q,使得QUOTE·QUOTEQUOTE,且PQ的中焦在y轴上,求a的取值范围,数学试题(二)第6页(共8页)请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲如图所示,在△ABC中,AB=AC,过点A的直线与其外接圆交于点P,交BC的延长线于点D.(1)求证:QUOTE=QUOTE;(2)若AC=3,求AP·AD的值.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,z轴的正半轴为极轴建立极坐标系,已知曲线C:QUOTE(a>0),过点P(-4,-2)的直线L的参数方程为QUOTE(t为参数),L与C分别交于点M,N.(1)写出C的直角坐标方程和L的普通方程;(2)若QUOTE,QUOTE,QUOTE成等比数列,求a的值,数学试题(二)第7页(共8页)24.(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=lx--1l+lx+1l.(1)求不等式,f(x)≥3的解集;(2)若关于x的不等式,f(x)˃a2-x2+2x在R上恒成立,求实数a的取值范围.数学试题(二)第8页(共8页)答案1.B解析:解法一:z=QUOTE=QUOTE=i解法二:z=QUOTE=QUOTE2.A解析:M=QUOTE,N=QUOTE,QUOTEMQUOTEN=[-2,4)3.A解析:若采用系统抽样方法从1000人中抽取50人做问卷调查,则需要分为50组,每组20人,若第一组抽到的号码为8,则以后每组抽取的号码分别为28,48,68,88,108,…,所以编号落入区间[1,400]的有20人,编号落入区间[401,750]的有18人,所烈做问卷C的有12人.4.C解析:命题p为假命题,命题q为真命题,所以¬pQUOTEq为真命题.5.C解析:因为点A到抛物线C,的焦点的距离为p,所以点A到抛物线准线的距离为p,从而点A的坐标可以为(QUOTE,±p),所以双曲线的渐近线方程为了y=±2x.所以QUOTE=2,所以b2=4a2.又b2=c2-a2,所以c2=5a2.所以双曲线的离心率为QUOTE6.B解析:QUOTE的展开式中第r+1项为QUOTE.(-QUOTE)=(-1)rQUOTE,当QUOTE为正整数时,r=0或2,所以QUOTE的展开式中含x的正整数指数幂的项数是2.7.C解析:设等差数列{an}的公差为d,若a2+a5>0,则a1十a2=(a2-d)+(a5-3d)=(a2+a5)-4d,由于d的正负不确定,因而a1+a2的符号不确定,故选项若a1+a3<0,则a1+a2=(a1+a3)-d,由于d的正负不确定,因而a1+a2的符号不确定,故选项B错误;若0<a1<a2,则a1>0,d>0,a2>0,a3>0,a4>0,所以QUOTE=QUOTE,a3>QUOTE,故选项C正确;(a2–a1)(a4-a2)=d(2d)=2d2,由于d有可能等于0,故选项D错误.8.D解析:连接PO,由题意知,PO⊥底面ABCD,PO=R,S正方彤ABCD==2R2.因为VP-ABC=QUOTE,所以QUOTE,解得R=2,所以球0的表面积是16QUOTE.9.D解析:如图,作出不等式组表示的平面区域,由z=kx-y得y=kx-z,要使目标函数z=kr-y仅在点A(O,2)处取得最小值,则阴影部分区域在直线y=kx+2的下方,所以目标函数的斜率A满足-3<k<l.10.D解析:由该几何体的三视图可得其直观图为如图所示的三棱锥,其中从点A出发的三条棱两两垂直,且AB=1,PC=QUOTE,PB=a,BC=b,则PA2+AC2=a2—1+b2-1=6,即a2+b2=8.所以(a+b)2=8+2ab≤8+2QUOTE,即a+b≤4,当且仅当a=b=2时取等号,此时,PA=QUOTE,AC=QUOTE.所以该几何体的体积V=QUOTE.11.C解析:由QUOTE·QUOTE=2QUOTE.∠BAC=300得S△ABC=1,即x+y+z=1,f(xyz)=QUOTE=14+QUOTEQUOTE=14+4+6+12=36.当且仅当y=2x,z=3x,2z=3y,即x=QUOTE,y=QUOTE,z=QUOTE时取等号12.D解析:如果对于函数图象上的任意一点M(x1,y1),在其图象上都存在点N(x2,y2)使OM⊥ON,则函数图象上的点的集合为商高线.对于①,若取M(1,1),则不存在这样的点;对于③,若取M(1,O),则不存在这样的点.故选D.13.0解析:若输入x=0.1,则m=lg0.1=-1,因为m<0,QUOTEm=-1+1=0.所以输出的仇的值为0.14.-4解析:因为f(x)是定义在R上的奇函数,QUOTEf(0)=1+m=0,QUOTEm=-1.QUOTEf(-log35)=-f(log35)=-(3log35-1)=-4.15.2解析:因为f(x)=2sinx·cosxQUOTE2cos2x=sin2xQUOTEcos2xQUOTE1=QUOTE,所以其最大值为QUOTEQUOTE1,QUOTEP1错误f(x)=QUOTE的图像向右平移QUOTE个单位后得到函数为f(x)=QUOTE=QUOTE,QUOTEP2错误由QUOTE,kQUOTEZ得函数f(x)的单调递增区间为QUOTE,kQUOTEZ,QUOTEP3正确由QUOTE=kQUOTE,kQUOTEZ,得x=QUOTE,kQUOTEZ,QUOTEP4正确16.QUOTE解析:因为an-1-an=QUOTE(nQUOTE),QUOTEQUOTE,QUOTEQUOTE.QUOTEQUOTEQUOTEQUOTE.所以QUOTE,QUOTEQUOTE,经检验,n=1时也适合此公式QUOTEQUOTE17.解(1)因为A=QUOTE,QUOTEB+C=QUOTEQUOTEsin(QUOTE-C)=3sinC···································································2分QUOTEQUOTEcosC+QUOTEsinC=3sinC······························································4分QUOTEQUOTEcosC=QUOTEsinC,QUOTEtanC=QUOTE·························································6分(2)由QUOTE,sinB=3sinC得b=3c····················································8分ΔABC中,由余弦定理得a2=b2+c2-2bccosA=9c2+c2-2×(3c)×c×QUOTE=7c2························10分因为a=QUOTE,QUOTEc=1,b=3QUOTEΔABC的面积为S=bsinA=QUOTE·························································12分18.解:(1)根据题意,有QUOTE,解得QUOTE·····························2分p=0.15,q=0.10(2)用分层抽样的方法,从中选取10人,则其中“压岁钱超过2千元的青少年”有10QUOTE=4人,“压岁钱不超过2千元的青少年”有10QUOTE=6人···············································5分故QUOTE的可能取值为0,1,2,3P(QUOTE=0)=QUOTE,P(QUOTE=1)=QUOTE,P(QUOTE=2)=QUOTE,P(QUOTE=3)=QUOTE·····················7分所以QUOTE的分布列为:QUOTE0123P

QUOTE··············································10分(3)以频率估计概率,从该市青少年中随机抽取1人为“压岁钱超过2千元的青少年”的概率为QUOTE,则η~B(15,QUOTE),所以随机变量η的期望为E(η)=15×QUOTE=6······································12分19.(1)证明:方法一:由题意知,在ΔAEF,AE=QUOTE,EF=QUOTE,AF=QUOTE······························1分QUOTEAE2+EF2=AF2,QUOTEAE⊥EF.································································2分在ΔAEC中,AE=QUOTE, EC=QUOTE,AF=QUOTE···················································3分QUOTEAE2+EC2=AC2,QUOTEAE⊥EC································································4分又EFQUOTEEC=E,QUOTEAE⊥平面ECF····························································5分又平面ECFᴝFC,QUOTEAE⊥FC.······························································6分方法二:因为四边形ABCD是菱形,AD=BD=2,QUOTEAC⊥BD,AC=QUOTE······························1分因为ED⊥平面ABCD,BD=2,BF=2,DE=2QUOTE,故可以O为坐标原点,以OA,OB所在直线为x轴、y轴,建立如图所示的空间直角坐标系。························································2分

则A(QUOTE,0,0),E(0,-1,),C(-QUOTE,0,0),F(0,1,2QUOTE)·································2分QUOTEQUOTE=(-QUOTE,-1,),QUOTE=(QUOTE,1,2QUOTE),·················································4分QUOTEQUOTE·QUOTE=(-QUOTE,-1,)·(QUOTE,1,2QUOTE)=-3-1+4=0·········································5分所以AE⊥CF···········································································6分(2)解:由(1)方法二知A(QUOTE,0,0),E(0,-1,),C(-QUOTE,0,0),F(0,1,2QUOTE)则QUOTE=(-,1,2QUOTE),QUOTE=(-2QUOTE,0,0),QUOTE=(0,2,QUOTE),QUOTE=(-QUOTE,1,-QUOTE)················7分设平面AFC的一个法向量为n1=(x1,y1,z1),由QUOTE·n1=0,QUOTE·n1=0,得-QUOTEx1+y1+2QUOTEz1=0且-2QUOTEx1=0··································8分令z1=1,得n1=(0,-2QUOTE,1)·························································9分设平面EFC的一个法向量为n2=(x2,y2,z2),由QUOTE·n2=0,QUOTE·n2=0,得2y2+QUOTEz2=0,且-QUOTEx2+y2-QUOTEz2=0·······························10分令y2=-1,得n2=(-QUOTE,-1,QUOTE)······················································11分设二面角A-FC-E的大小为QUOTE,则cosQUOTE=QUOTE····························12分20.(1)解:因为2a=4,所以a=2·····························································1分又焦点在x轴上,所以设椭圆方程为QUOTE········································2分将点(1,QUOTE)代入椭圆方程得b2=1···················································3分所以椭圆方程为QUOTE+y2=1······························································4分(2)证明:p(m,0)(-2QUOTEmQUOTE2),则直线L的方程是y=QUOTE·································5分由方程组QUOTE消去y得2x2-2mx+m2-4=0(*)···································7分设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根所以有x1+x2=m,x1x2=QUOTE···························································8分所以QUOTE=QUOTE=QUOTE=QUOTE=QUOTE=QUOTE=5··································11分所以QUOTE为定值····························································12分21.解:(1)因为h(x)=(-x3+x2)e1-x,QUOTEh′(x)=(x3-4x2+2x)e1-x····························································1分QUOTEh(1)=0,h′(1)=-1······························································2分QUOTEh(x)在(1,h(1))处的切线方程为y=-(x-1),即y=-x+1······························3分(2)因为g′(x)=QUOTEQUOTEg(x)=alnx+c(c为常数)QUOTEg(e)=alne+c=a+c=aQUOTEc=0QUOTEg(x)=alnx······································································4分由g(x)QUOTE-x2+(a+2)x,得(x-lnx)aQUOTEx2-2x.由于xQUOTE时,lnxQUOTE1QUOTEx,且等号不能同时成立,所以lnxQUOTEx,x-lnxQUOTE0从而aQUOTEQUOTE,为满足题意,必须aQUOTEQUOTE···································5分设t(x)=QUOTE,xQUOTE,则t′(x)=QUOTE因为xQUOTE,所以x-1QUOTE0,lnxQUOTE1,x+2-2lnxQUOTE0,从而t′(x)QUOTE0所以t(x)在QUOTE上为增函数························································6分从而t(x)max=t(e)=QUOTE,从而aQUOTEQUOTE··················································7分(3)设P(t,F(t))为y=F(X)在xQUOTE1时的图象上的任意一点,则tQUOTE1因为PQ的中点在y轴上,所以Q得坐标为(-t,F(-t))···································8分因为tQUOTE1所以-tQUOTE1,所以P(t,-t3+t2),Q(-t,aln(-t))因为QUOTE·QUOTE=-t2-at2(t-1)ln(-t)QUOTE0所以a(1-t)ln(-t)QUOTE1····························································9分当t=-1时,a(1-t)ln(-t)QUOTE1恒成立,所以aQUOTER····································10分当tQUOTE-1时,aQUOTEQUOTE,令QUOTE(t)=QUOTE(tQUOTE-1)则QUOTE′(t)=QUOTE因为tQUOTE-1,所以t-1QUOTE0,tln(-t)QUOTE0,所以QUOTE′(t)QUOTE0从而QUOTE(t)=QUOTE在(QUOTE)上为增函数,由于tQUOTE时,QUOTE(t)=QUOTEQUOTE0所以QUOTE(t)QUOTE0,所以aQUOTE0综上可知a的取值范围是QUOTE··················································12分22.(1)证明:因为∠CPD=∠ABC,∠PDC=∠PDC,所以ΔDPC~ΔDBA··································2分所以QUOTE·································································3分又AB=AC,所以QUOTE························································5分(2)解:因为∠ABC+∠APC=1800,∠ACB+∠ACD=1800,∠ABC=∠ACB,所以∠APC=∠ACD································································7分又∠CAP=∠DAC,所以ΔAPC~ΔACD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论