




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ChMOS场效应管的特性演示文稿现在是1页\一共有80页\编辑于星期日优选ChMOS场效应管的特性现在是2页\一共有80页\编辑于星期日36.1MOS场效应管
6.1.1MOS的基本结构两个PN结:1)N型漏极与P型衬底;2)N型源极与P型衬底。同双极型晶体管中的PN结一样,在结周围由于载流子的扩散、漂移达到动态平衡,而产生了耗尽层。一个电容器结构:栅极与栅极下面的区域形成一个电容器,是MOS管的核心。现在是3页\一共有80页\编辑于星期日4
器件制作在P型衬底上两个重掺杂N区形成源区和漏区重掺杂多晶硅区(Poly)作为栅极一层薄SiO2绝缘层作为栅极与衬底的隔离NMOS管的有效作用就发生在栅氧下的衬底表面——导电沟道(Channel)上。NMOS管的简化结构现在是4页\一共有80页\编辑于星期日5MOSFET的三个基本几何参数栅长: L栅宽: W氧化层厚度: tox现在是5页\一共有80页\编辑于星期日6MOSFET的三个基本几何参数Lmin、Wmin和tox
由工艺确定Lmin:MOS工艺的特征尺寸(featuresize)决定MOSFET的速度和功耗等众多特性L和W由设计者选定通常选取L=
Lmin,由此,设计者只需选取WW影响MOSFET的速度,决定电路驱动能力和功耗现在是6页\一共有80页\编辑于星期日7MOSFET的伏安特性:电容结构当栅极不加电压或加负电压时,栅极下面的区域保持P型导电类型,漏和源之间等效于一对背靠背的二极管,当漏源电极之间加上电压时,除了PN结的漏电流之外,不会有更多电流形成。当栅极上的正电压不断升高时,P型区内的空穴被不断地排斥到衬底方向。当栅极上的电压超过阈值电压VT,在栅极下的P型区域内就形成电子分布,建立起反型层,即N型层,把同为N型的源、漏扩散区连成一体,形成从漏极到源极的导电沟道。这时,栅极电压所感应的电荷Q为,
Q=CVge式中Vge是栅极有效控制电压。现在是7页\一共有80页\编辑于星期日8非饱和时,在漏源电压Vds作用下,这些电荷Q将在时间内通过沟道,因此有MOS的伏安特性
电荷在沟道中的渡越时间为载流子速度,Eds=Vds/L为漏到源方向电场强度,Vds为漏到源电压。为载流子迁移率:µn
=650cm2/(V.s)
电子迁移率(nMOS)µp
=240cm2/(V.s)
空穴迁移率(pMOS)现在是8页\一共有80页\编辑于星期日9MOSFET的伏安特性—方程推导非饱和情况下,通过MOS管漏源间的电流Ids为:='.0栅极-沟道间氧化层介电常数,'=4.5,0=0.88541851.10-11
C.V-1.m-1此式常用于人工估算电路性能。现在是9页\一共有80页\编辑于星期日10MOS的伏安特性—方程分析非饱和情况下,Vds固定时,Ids是Vgs的线性函数:现在是10页\一共有80页\编辑于星期日11MOS的伏安特性—方程分析当Vgs固定时,Ids(Vds)由线性项和平方项组成:现在是11页\一共有80页\编辑于星期日12当Vgs-VT=Vds时,满足:Ids达到最大值Idsmax,其值为Vgs-VT=Vds,意味着近漏端的栅极有效控制电压Vge=Vgs-VT-Vds=Vgs-Vds-VT=
Vgd-VT=0感应电荷为0,沟道夹断,电流不会再增大,因而,这个Idsmax就是饱和电流。MOS的伏安特性—漏极饱和电流现在是12页\一共有80页\编辑于星期日13MOSFET特性曲线在非饱和区 ,也称为线性工作区在饱和区(Ids
与Vds无关)。MOSFET是平方律器件!现在是13页\一共有80页\编辑于星期日146.1.2MOSFET电容的组成MOS电容是一个相当复杂的电容,有多层介质:首先,在栅极电极下面有一层SiO2介质。SiO2下面是P型衬底,衬底是比较厚的。最后,是一个衬底电极,它同衬底之间必须是欧姆接触。MOS电容还与外加电压有关。
现在是14页\一共有80页\编辑于星期日15
1.MOS电容特性
MOS电容的特性与栅极上所加的电压紧密相关,这是因为半导体的表面状态随栅极电压的变化可处于积累层、耗尽层、反型层三种状态。
1)积累层对P型衬底材料上的N型MOS器件,当Vgs<0时,栅极上的负电荷吸引衬底中的空穴趋向硅的表面,形成积累层。这时,MOS器件的结构就像平行平板电容器,栅极和高浓度空穴积累层分别是平板电容器的两个极板。现在是15页\一共有80页\编辑于星期日16由于积累层本身是和衬底相连的,所以栅电容可近似为式中:ε0——真空介电常数;
εox——SiO2的相对介电常数,其值是3.9;
tox——SiO2层的厚度;A——栅极的面积。现在是16页\一共有80页\编辑于星期日17
2)耗尽层
当0<Vgs<Vth
时,在正的栅电压Vgs的作用下,栅极上的正电荷排斥了Si中的空穴,在栅极下面的Si表面上,形成一个多数载流子空穴耗尽的负电荷区域,形成了一个耗尽层。耗尽区中没有可以自由活动的载流子,只有空穴被赶走后剩下的固定的负电荷。这些束缚电荷是分布在厚度为Xp的整个耗尽区内,而栅极上的正电荷则集中在栅极表面。这说明了MOS电容器可以看成两个电容器的串联。以SiO2为介质的电容器——Co以耗尽层为介质的电容器——Cdep
现在是17页\一共有80页\编辑于星期日18这样,在耗尽状态下,栅极对衬底的总电容相当于栅氧化层电容C0和耗尽层电容Cdep的串联,即现在是18页\一共有80页\编辑于星期日19耗尽层厚度耗尽层电容的计算方法同PN结的耗尽层电容的计算方法相同:利用泊松公式式中NA是P型衬底中的掺杂浓度,将上式积分得耗尽区上的电位差:从而得出束缚电荷层厚度εSi——硅的相对介电常数,其值是12。现在是19页\一共有80页\编辑于星期日20耗尽层电容这时,在耗尽层中束缚电荷的总量为,它是耗尽层两侧电位差的函数,因此,耗尽层电容为,是一个非线性电容,随电位差的增大而减小。现在是20页\一共有80页\编辑于星期日21
3)弱反型层
进一步增大栅极电压,使Vgs>Vth,排斥掉更多的空穴,吸引了更多的电子,使得Si表面电位下降,能级下降,达到低于P型衬底的费米能级。这时,Si表面的电子浓度超过了空穴的浓度,半导体呈N型,这就是反型层。不过,它只是一种弱反型层。因为这时电子的浓度还低于原来空穴的浓度。随着反型层的形成,来自栅极正电荷发出的电力线,已部分地落在这些电子上,耗尽层厚度的增加就减慢了,相应的MOS电容Cdep的减小也减慢了。现在是21页\一共有80页\编辑于星期日22
当Vgs增加,达到VT值,Si表面电位的下降,能级下降已达到P型衬底的费米能级与本征半导体能级差的二倍。它不仅抵消了空穴,成为本征半导体,而且在形成的反型层中,电子浓度已达到原先的空穴浓度这样的反型层就是强反型层。显然,耗尽层厚度不再增加,Cdep也不再减小。这样,
就达到最小值Cmin。最小的Cdep是由最大的耗尽层厚度Xpmax计算出来的。4)强反型层现在是22页\一共有80页\编辑于星期日23MOS电容—凹谷特性(续)
当Vgs继续增大,反型层中电子的浓度增加,来自栅极正电荷的电力线,部分落在这些电子上,落在耗尽层束缚电子上的电力线数目就有所减少。情况很复杂,但是,人们相信,耗尽层电容将增大,两个电容串联后,C将增加。当Vgs足够大时,反型层中的电子浓度已大到能起到屏蔽作用,全部的电力线落在电子上。这时,反型层中的电子将成为一种镜面反射,感应全部负电荷,于是,C=Co。电容曲线出现了凹谷形。必须指出,上述讨论未考虑到反型层中的电子是哪里来的。若该MOS电容是一个孤立的电容,这些电子只能依靠共价键的分解来提供,它是一个慢过程,ms级。现在是23页\一共有80页\编辑于星期日24MOS电容—测量若测量电容的方法是逐点测量法—一种慢进程,那么将测量到这种凹谷曲线。
现在是24页\一共有80页\编辑于星期日25MOS电容凹谷特性测量若测量电容采用高频方法,譬如,扫频方法,电压变化很快。共价键就来不及瓦解,反型层就无法及时形成,于是,电容曲线就回到Cox值。然而,在大部分场合,MOS电容与n+区接在一起,有大量的电子来源,反型层可以很快形成,故不论测量频率多高,电压变化多快,电容曲线都呈凹谷形。现在是25页\一共有80页\编辑于星期日266.1.3MOS电容MOS电容C仅仅是栅极对衬底的电容,不是外电路中可以观察的电容Cg,Cs
和Cd。MOS电容C对Cg,Cd有所贡献。在源极和衬底之间有结电容Csb,在漏极和衬底之间也有结电容Cdb。另外,源极耗尽区、漏极耗尽区都渗进到栅极下面的区域。又,栅极与漏极扩散区,栅极与源极扩散区都存在着某些交迭,故客观上存在着Cgs和Cgd。当然,引出线之间还有杂散电容,可以计入Cgs和Cgd。
MOS器件电容
(a)寄生电容示意图;(b)寄生电容电路符号示意图现在是26页\一共有80页\编辑于星期日图6.3MOS晶体管等效电路图现在是27页\一共有80页\编辑于星期日28Cg、Cd的值还与所加的电压有关:1)若Vgs<VT,沟道未建立,MOS管漏源沟道不通。
MOS电容C=Cox,但C对Cd无贡献。
Cg=Cgs+CoxCd=Cdb2)若Vgs>VT,沟道建立,MOS管导通。MOS电容是变化的,呈凹谷状,从Cox下降到最低点,又回到Cox。这时,MOS电容C对Cg,Cd都有贡献,它们的分配取决于MOS管的工作状态。MOS电容的计算现在是28页\一共有80页\编辑于星期日29MOS电容的计算若处于非饱和状态,则按1/3与2/3分配,即Cg=Cgs+2/3CCd=Cdb+1/3C那是因为在非饱和状态下,与栅极电荷成比例的沟道电流为由Vgs和Vds的系数可知栅极电压Vgs对栅极电荷的影响力,与漏极电压Vds对栅极电荷的影响力为2:1的关系,故贡献将分别为2/3与1/3。现在是29页\一共有80页\编辑于星期日30MOS电容的计算(续)若处于饱和状态,则表明沟道电荷已与Vds无关,沟道已夹断。那么,Cg=Cgs+2/3C,Cd=Cdb+0在饱和状态下,沟道长度受到Vds的调制,现在是30页\一共有80页\编辑于星期日31MOS电容的计算(续)当Vds增加时,L增大,Ids增加,那是因为载流子速度增加了,它与C的分配无关。然而,L的增大是由于漏极耗尽层宽度有所增加,增大了结电容。故,
Cg=Cgs+2/3CCd=Cdb+0+Cdb现在是31页\一共有80页\编辑于星期日32深亚微米CMOSIC工艺的寄生电容(数据)
Cap. N+Act. P+Act. Poly M1 M2 M3 UnitsArea(sub.) 526 937 83 25 10 8 fF/um2Area(poly) 54 18 11 fF/um2Area(M1) 46 17 fF/um2Area(M2) 49 fF/um2Area(N+act.) 3599 fF/um2Area(P+act.) 3415 fF/um2Fringe(sub.) 249 261 fF/um现在是32页\一共有80页\编辑于星期日33深亚微米CMOSIC工艺的寄生电容(图示)CrossviewofparasiticcapacitorofTSMC_0.35umCMOStechnology现在是33页\一共有80页\编辑于星期日346.2MOSFET的阈值电压VT阈值电压是MOS器件的一个重要参数。按MOS沟道随栅压正向和负向增加而形成或消失的机理,存在着两种类型的MOS器件:耗尽型(Depletion):沟道在Vgs=0时已经存在。当Vgs“负”到一定程度时截止。一般情况,这类器件用作负载。增强型(Enhancement):在正常情况下它是截止的,只有当Vgs“正”到一定程度,才会导通,故用作开关。现在是34页\一共有80页\编辑于星期日35VT的组成概念上讲,VT就是将栅极下面的Si表面从P型Si变为N型Si所必要的电压。
它由两个分量组成,即:
VT=Us+VoxUs:Si表面电位;
Vox:SiO2层上的
压降。图6.5现在是35页\一共有80页\编辑于星期日36Us的计算将栅极下面的Si表面从P/N型Si变为N/P型Si所必要的电压Us与衬底浓度Na有关。在半导体理论中,P型半导体的费米能级是靠近满带的,而N型半导体的费米能级则是靠近导带的。要想把P型变为N型,外加电压必须补偿这两个费米能级之差。所以有:图6.4现在是36页\一共有80页\编辑于星期日37Vox的计算Vox根据右图从金属到氧化物到Si衬底Xm处的电场分布曲线导出:现在是37页\一共有80页\编辑于星期日38VT的理想计算公式现在是38页\一共有80页\编辑于星期日396.3影响VT值的四大因素1. 材料的功函数之差当金属电极同Si晶片接触时,ms=m-s对于AlSi(p)接触,ms=(-0.7)(-1.5)eV2. SiO2层中可移动的正离子主要是Na+离子的影响,使阈值电压降低3. 氧化层中固定电荷固定正电荷QF使阈值电压降低4. 界面势阱
Si与其它材料界面上,硅晶格突然终止有电子被挂起,形成挂键,导致界面势阱。现在是39页\一共有80页\编辑于星期日40MOSFET的VT值的完整表达式
形成反型层所必要的电压
SiO2层上的电压降栅极材料与衬底材料之间的功函数之差
SiO2层中可移动的正离子效应氧化层中固定电荷的影响
界面势垒的影响现在是40页\一共有80页\编辑于星期日416.4MOSFET的体效应前面的推导都假设源极和衬底都接地,认为Vgs是加在栅极与衬底之间的。实际上,在许多场合,源极与衬底并不连接在一起。通常,衬底是接地的,但源极未必接地,源极不接地时对VT值的影响称为体效应(BodyEffect)。图6.12现在是41页\一共有80页\编辑于星期日42体效应:衬底不接地对VT0的影响假设NMOS器件的源极接地,衬底不接地,加了一个负偏压,Vbs0,漏极加电压Vds0将MOS器件的VT值分成两部分,VT=VT0+Vg式中VT0是基本阈值电压,Vg是四大因素影响之总和。衬底不接地对VT0的影响是Si中的耗尽层电荷Qd。本来,电荷值Qd等于现在是42页\一共有80页\编辑于星期日43体效应:衬底不接地对VT0的影响
对于Vbs0,Vds0后,栅极下面的Si中耗尽层所对应的电位是式中kx是变化的,近源端kx=0,近漏端kx=1,平均计算,kx=1/2。这样,则栅极下面Si表面源端、中部和漏端的耗尽层对应的电位为 源端 中部 漏端现在是43页\一共有80页\编辑于星期日44体效应:衬底不接地对VT0的影响(续)定义:VT的基本部分变为:
体效应还影响到界面势阱项
现在是44页\一共有80页\编辑于星期日456.5MOSFET的温度特性MOSFET的温度特性主要来源于沟道中载流子的迁移率µ和阈值电压VT随温度的变化。载流子的迁移率随温度变化的基本特征是:T
µ
由于所以,T
gm阈值电压VT的绝对值同样是随温度的升高而减小:T
VTVT(T)(24)mV/°CVT的变化与衬底的杂质浓度Ni和氧化层的厚度tox有关:(Ni
,tox)
VT(T)
现在是45页\一共有80页\编辑于星期日466.6
MOSFET尺寸按比例缩小(Scaling-down)现在是46页\一共有80页\编辑于星期日476.6.1MOSFET尺寸缩小对器件性能的影响MOSFET特性:非饱和区
饱和区现在是47页\一共有80页\编辑于星期日48结论1:L
Ids
tox
Ids
L+tox
Ids减小L和tox引起MOSFET的电流控制能力提高结论2:W
Ids
P
减小W引起MOSFET的电流控制能力和输出功率减小结论3:(
L+tox+W)Ids=C
AMOS同时减小L,tox和W,可保持Ids不变,但导致器件占用面积减小,电路集成度提高。总结论:缩小MOSFET尺寸是VLSI发展的总趋势!6.7.1MOSFET尺寸缩小对器件性能的影响现在是48页\一共有80页\编辑于星期日49减小L引起的问题:LVds=C
(Ech,Vdsmax)即在VdsVdsmax=VDD不变的情况下,减小L将导致击穿电压降低。解决方案:减小L的同时降低电源电压VDD。降低电源电压的关键:降低开启电压VT
6.7.1MOSFET尺寸缩小对器件性能的影响图6.14现在是49页\一共有80页\编辑于星期日50栅长、阈值电压、与电源电压L(m) 10 2 0.5 0.35 0.18VT(V)7-9 4 1 0.6 0.4VDD(V) 20 12 5 3.3 1.8现在是50页\一共有80页\编辑于星期日516.7.2VT的功能与降低VT的措施VT的功能:1)在栅极下面的Si区域中形成反型层;2)克服SiO2介质上的压降。降低VT的措施:1)降低衬底中的杂质浓度,采用高电阻率的衬底;2)减小SiO2介质的厚度tox。(两项措施都是工艺方面的问题)现在是51页\一共有80页\编辑于星期日526.7.3
MOSFET的跨导gm和输出电导gds根据MOSFET的跨导gm的定义为:MOSFETI-V特性求得:MOSFET的优值:L0现在是52页\一共有80页\编辑于星期日536.7.4MOSFET的动态特性和尺寸缩小的影响MOSFET电路等效于一个含有受控源Ids的RC网络。Ids: Ids(Vgs)R: Ids(Vds),Rmetal,Rpoly-Si,RdiffC: Cgs,Cgd,Cds,Cgb,Csb,Cdb,Cmm,CmbCg=Cgs+Cgd+Cgb,关键电容值现在是53页\一共有80页\编辑于星期日54MOSFET的动态特性,亦即速度,取决于RC网络的充放电的快慢,进而取决于电流源Ids的驱动能力,跨导的大小,RC时间常数的大小,充放电的电压范围,即电源电压的高低。MOSFET的动态特性和尺寸缩小的影响现在是54页\一共有80页\编辑于星期日55MOSFET的速度可以用单级非门(反相器)的时延D来表征。Scaling-down(L,W,tox,VDD)对MOSFET速度的影响:(L,W,tox)Ids
D
基本不变,但是
VDD 结论:器件尺寸连同VDD同步缩小,器件的速度提高。MOSFET的动态特性和尺寸缩小的影响}现在是55页\一共有80页\编辑于星期日566.7.5MOSFET尺寸按比例缩小的三种方案1) 恒电场(constantelectricalfield)2)
恒电压(constantvoltage)3)
准恒电压(Quasi-constantvoltage)现在是56页\一共有80页\编辑于星期日57Scaling-down的三种方案(续)采用恒电场CE缩减方案,缩减因子为时,各电路指标变化。现在是57页\一共有80页\编辑于星期日58Scaling-down的三种方案(续)MOSFET特征尺寸按(>1)缩减的众多优点:电流密度增加2倍
VLSI,ULSI功耗降低2倍
器件时延降低倍器件速率提高倍线路上的延迟不变优值增加2倍
这就是为什么人们把MOS工艺的特征尺寸做得一小再小,使得MOS电路规模越来越大,MOS电路速率越来越高的重要原因。现在是58页\一共有80页\编辑于星期日596.8MOS器件的二阶效应随着MOS工艺向着亚微米、深亚微米的方向发展,采用简化的、只考虑一阶效应的MOS器件模型来进行电路模拟,已经不能满足精度要求。此时必须考虑二阶效应。二阶效应出于两种原因:1)当器件尺寸缩小时,电源电压还得保持为5V,于是,平均电场强度增加了,引起了许多二次效应。2)当管子尺寸很小时,这些小管子的边缘相互靠在一起,产生了非理想电场,也严重地影响了它们的特性。下面具体讨论二阶效应在各方面的表现。现在是59页\一共有80页\编辑于星期日606.8.1
L和W的变化在一阶理论的设计方法中,总认为L、W是同步缩减的,是可以严格控制的。事实并非如此,真正器件中的L、W并不是原先版图上所定义的L、W。原因之一在于制造误差,如右图所示;原因之二是L、W定义本身就不确切,不符合实际情况。图6.15现在是60页\一共有80页\编辑于星期日616.8.1
L和W的变化(续)通常,在IC中各晶体管之间是由场氧化区(fieldoxide)来隔离的。在版图中,凡是没有管子的地方,一般都是场区。场是由一层很厚的SiO2形成的。多晶硅或铝线在场氧化区上面穿过,会不会产生寄生MOS管呢?不会的。因为MOS管的开启电压为,
对于IC中的MOS管,SiO2层很薄,Cox较大,VT较小。对于场区,SiO2层很厚,Cox很小,电容上的压降很大,使得这个场区的寄生MOS管的开启电压远远大于电源电压,即VTF>>VDD。这里寄生的MOS管永远不会打开,不能形成MOS管。现在是61页\一共有80页\编辑于星期日62另外,人们又在氧化区的下面注入称为场注入区(fieldimplant)的P+区,如下图所示。这样,在氧化区下面衬底的Na值
较大,也提高了寄生MOS管的开启电压。同时,这个注入区也用来控制表面的漏电流。如果没有这个P+注入区,那么,两个MOS管的耗尽区很靠近,漏电增大。由于P+是联在衬底上的,处于最低电位,于是,反向结隔离性能良好,漏电流大大减小。
结论:所以,在实际情况中,需要一个很厚的氧化区和一个注入区,给工艺带来了新的问题。图6.16现在是62页\一共有80页\编辑于星期日63L和W的变化(续)
通常,先用有源区的mask,在场区外生成一个氮化硅的斑区。然后,再以这个斑区作为implantmask,注入P+区。最后,以这个斑区为掩膜生成氧化区。然而,在氧化过程中,氧气会从斑区的边沿处渗入,造成了氧化区具有鸟嘴形(birdbeak)。Birdbeak的形状和大小与氧化工艺中的参数有关,但是有一点是肯定的,器件尺寸,有源区的边沿更动了。器件的宽度不再是版图上所画的Wdrawn,而是W,W=Wdrawn2W式中W就是birdbeak侵入部分,其大小差不多等于氧化区厚度的数量级。当器件尺寸还不是很小时,这个W影响不大;当器件缩小后,这个W是可观的,它影响了开启电压。现在是63页\一共有80页\编辑于星期日64L和W的变化(续)另一方面,那个注入区也有影响。由于P+区是先做好的,后来在高温氧化时,这个P+区中的杂质也扩散了,侵入到管子区域,改变了衬底的浓度Na,影响了开启电压。同时,扩散电容也增大了,N+区与P+区的击穿电压降低。另外,栅极长度L不等于原先版图上所绘制的Ldrawn,也减小了,如图所示。Ldrawn是图上绘制的栅极长度。Lfinal是加工完后的实际栅极长度。Lfinal=Ldrawn2Lpoly图6.17现在是64页\一共有80页\编辑于星期日656.8.1
L和W的变化(续)尺寸缩小的原因是在蚀刻(etching)过程中,多晶硅(Ploy)被腐蚀掉了。另一方面,扩散区又延伸进去了,两边合起来延伸了2Ldiff,故沟道长度仅仅是,
L=Ldrawn2Lpoly2Ldiff这2Ldiff是重叠区,也增加了结电容。
Cgs=WLdiffCox
Cgd=WLdiffCox式中Cox是单位面积电容。现在是65页\一共有80页\编辑于星期日666.8.2迁移率的退化众所周知,MOS管的电流与迁移率成正比。在设计器件或者计算MOS管参数时,常常假定是常数。而实际上,并不是常数。从器件的外特性来看,至少有三个因素影响值,它们是:温度T,垂直电场Ev,水平电场Eh。1)特征迁移率0
0与制造工艺密切相关。它取决于表面电荷密度,衬底掺杂和晶片趋向。0还与温度T有关,温度升高时,0就降低。如果从25℃增加到100℃,0将下降一半。因而,在MOS管正常工作温度范围内,要考虑0是变化的。现在是66页\一共有80页\编辑于星期日67迁移率的退化(续)2)迁移率的退化与电场强度通常,电场强度E增加时,是减小的。然而,电场E有水平分量和垂直分量,因而将随Ev,Eh而退化。通常,可以表示为,
=0(T)fv(Vg,Vs,Vd)fh(Vg,Vs,Vd)其中,0(T)是温度的函数,0(T)=kTM于是,
在半导体Si内,M=1.5,这是Spice中所用的参数。但在反型层内(NMOS管),M=2,所以,一般认为,M值是处在1.52之间。0的典型值为,N沟道MOS管,0=600cm2/VS;P沟道MOS管,0=250cm2/VS。式中fv是垂直电场的退化函数;fh是水平电场的退化函数。现在是67页\一共有80页\编辑于星期日68迁移率的退化(续)通常,fv采用如下公式,
式中,Vc是临界电压,Vc=ctox,c是临界电场,c=2105V/cm。垂直值退化大约为25%50%。水平电场对的影响,比垂直电场大得多。因为水平电场将加速载流子运动。当载流子速度被加速到一个大的数值,水平速度会饱和。一般来讲,N型Si的0远大于P型Si的0。然而,这两种载流子的饱和速度是相同的。对于一个高性能器件来说,载流子是以最高速度,即饱和速度通过沟道的。这时,P沟道管子的性能与N沟道管子差不多相等。这并不是P型器件得到改进,而是N型器件有所退化。现在是68页\一共有80页\编辑于星期日69迁移率的退化(续)经过长期研究,已经确定,在电场不强时,N沟道的确实比P沟道的大得多,约2.5倍。但当电场增强时,这个差距就缩小,当电场强到一定程度,N管与P管达到同一饱和速度,得到同一个值。它与掺杂几乎无关。现在是69页\一共有80页\编辑于星期日706.8.3沟道长度调制简化的MOS原理中,认为饱和后,电流不再增加。事实上,饱和区中,当Vds增加时,Ids仍然增加的。这是因为沟道两端的耗尽区的宽度增加了,而反型层上的饱和电压不变,沟道距离减小了,于是沟道中水平电场增强了,增加了电流。故器件的有效沟道长度为,
L'=L式中是漏极区的耗尽区的宽度,如右图所示,且有
其中VdsVDsat是耗尽区上的电压。如果衬底掺杂高,那么这种调制效应就减小了。图6.18现在是70页\一共有80页\编辑于星期日716.8.4短沟道效应引起门限电压变化迄今,我们对MOS管的分析全是一维的。无论是垂直方向,还是水平方向,都是一维计算的。我们隐含地假定,所有的电场效应都是正交的。然而,这种假定在沟道区的边沿上是不成立的。因为沟道很短,很窄,边沿效应对器件特性有重大影响。(最重要的短沟道效应是VT的减小。)加在栅极上的正电压首先是用来赶走P型衬底中的多数载流子——空穴,使栅极下面的区域形成耗尽层,从而降低了Si表面的电位。当这个电位低到P型衬底的费米能级时,半导体出现中性。这时,电子浓度和空穴浓度相等。若再增加栅极电压,就形成反型层。现在是71页\一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- rfid考试题及答案
- 计分办法面试题及答案
- 辅助岗位考试题库及答案
- 黄金员工面试题及答案
- 编导统考试题及答案
- 法规事物面试题及答案
- 大庆考区面试题及答案
- 《读大学究竟读什么》的读书心得体会模版
- 21古诗两首语文三年级下2019春
- 小米华为专利互换协议书
- 医保按病种分值付费(DIP)院内培训
- 施工钢结构制作安装环境因素识别表
- 污水井巡查记录表
- 2关于更换现场项目经理的函
- 部编版小学道德与法治四年级下册期末复习简答及分析题专练(含答案)
- 电子商务那些事学习通超星课后章节答案期末考试题库2023年
- 环境及理化因素损伤-冻伤
- Unit7SeasonPartALetslearn(教学设计)闽教版英语四年级下册
- 世界文化遗产武当山古建筑群的资料
- 医院医疗设备采购项目HIS系统及硬件采购投标文件
- 【橡胶工艺】-橡胶产品生产工艺规程
评论
0/150
提交评论