




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
乙基吗啉产业发展研究报告
到2035年,成为世界重要原材料产品的研发、生产、应用高地,新材料产业竞争力全面提升,绿色低碳发展水平世界先进,产业体系安全自主可控。制定化工园区认定条件,指导地方认定一批化工园区,引导化工企业集聚规范化发展。推动石化化工行业探索现代煤化工与传统炼化产业、可再生能源发电制氢产业互补发展,引导钢铁行业依托城市矿山建设分布式短流程钢厂,促进电解铝行业布局由煤—电—铝向水电、风电等清洁能源—铝转移,推动建材行业向协同处置废弃物的循环经济发展模式转变。推动原材料领域国家新型工业化产业示范基地建设,促进产业集聚向集群转型提升。聚焦产业基础好、比较优势突出、技术领先的行业细分领域或重点产品,发挥产业链龙头企业引领带头作用,推动要素聚集和价值提升,强化专业化协作和配套能力,打造一批石化化工、钢铁、有色金属、稀土、绿色建材、新材料产业集群。及时发布产能预警,防止地方盲目重复建设。突破关键材料坚持材料先行和需求牵引并重,聚焦国防建设、民生短板和制造强国建设重大需求,滚动制定关键材料产品目录,制定发布技术路线图。实施关键短板材料攻关行动,采用揭榜挂帅赛马等方式,支持材料生产、应用企业联合科研单位,开展宽禁带半导体及显示材料、集成电路关键材料、生物基材料、碳基材料、生物医用材料等协同攻关。实施大宗基础材料巩固提升行动,引导企业在优化生产工艺的基础上,利用工业互联网等新一代信息技术,提升先进制造基础零部件用钢、高强铝合金、稀有稀贵金属材料、特种工程塑料、高性能膜材料、纤维新材料、复合材料等综合竞争力。实施前沿材料前瞻布局行动,支持科研单位联合企业,把握新材料技术与信息技术、纳米技术、智能技术等融合发展趋势,发展超导材料、智能仿生、增材制造材料等,推动新的主干材料体系化发展,强化应用领域的支持和引导。实施材料基因工程计划,探索材料研发新模式的试点应用。实施关键材料应用推广行动,优化重点新材料首批次应用保险补偿机制,通过首台(套)、绿色建材推广等措施促进新材料应用。发展环境十四五时期,原材料工业进入高质量发展新阶段,机遇前所未有,挑战更加严峻,机遇和挑战呈现许多新变化。从机遇看,新发展格局加快构建,国内超大规模市场优势进一步发挥,特别是新兴领域和消费升级对高端材料的需求,为原材料工业持续健康发展提供了广阔空间。我国公平竞争的市场体系日趋完善,特别是各种资源要素向优势领域、企业集聚,为原材料工业强化产业链韧性提供了基础支撑。新一轮科技革命和产业变革重塑全球经济结构,特别是新一代信息技术和制造业深度融合,为原材料工业转型升级锻造新优势提供了动力源泉。从挑战看,面对经济全球化逆流和新冠肺炎疫情广泛影响,产业链供应链安全风险凸显,拓展国际市场难度明显增加。面对高质量发展新阶段的新形势,钢铁、电解铝、水泥等主要大宗原材料产品需求将陆续达到或接近峰值平台期,规模数量型需求扩张动力趋于减弱。面对资源能源和生态环境的强约束,碳达峰碳中和的硬任务,人民群众对安全生产的新期盼,原材料工业绿色和安全发展的任务更加紧迫。当前,原材料工业存在的短板和瓶颈依然突出,中低端产品严重过剩与高端产品供给不足并存,关键材料核心工艺技术与装备自主可控水平不高,绿色低碳发展任重道远,数字化水平难以有效支撑高质量发展,关键战略资源保障能力不强等问题亟待加快解决。面对新形势、新要求,要保持战略定力,增强底线思维,坚持系统观念,加速推动原材料工业体系优化开放与高质量发展。促进产业供给高端化(一)健全创新体系强化创新平台载体支撑。鼓励优势企业积极参与国家重点实验室建设及体系重组,建设重点领域国家制造业创新中心,支持建立省级创新中心。支持转制院所整合产业链和创新链,组建产业共性技术研究平台,提升绿色选冶、高端加工、稳定制备等工程化能力。支持地方结合本地实际采取多种形式建设国家重点新材料中试平台。加大新材料产业计量测试中心、平台和联盟建设。继续组织国家新材料生产应用示范、测试评价等平台建设,协同推进产品设计、研制生产、系统验证、批量应用。完善创新服务支撑体系,建立国家新材料科研设施公用平台。建立新材料数据中心,提高数据服务产业发展的能力。(二)优化完善创新机制生态支持原材料企业加大投入,联合下游企业、高校、科研院所,围绕工艺、装备、产品等方面,开展基础研究和应用创新。制定国有企业科技人才薪酬激励政策,在业绩考核、研发投入、工资总额、人才待遇等方面给予激励政策支持。选择一批创新基础好的企业,试行享受高校及科研院所同等科技成果转化政策,放开员工持股限制,在绩效考核中调高创新成果转化等相关指标权重,对作出突出贡献的核心骨干人员给予倾斜。加强国际交流合作,吸引国外重点企业、研究机构来华投资建厂和设立研发中心,鼓励中外机构合作开展材料技术创新研究。支持企业设立境外材料技术和装备研发机构,开展国际技术创新合作。夯实数字化支撑基础分行业推进智能制造标准体系建设。搭建智能制造标准试验验证平台,在重点行业与领域加快开展标准试点与推广。支持组建行业智能制造联盟、设立专家委员会。分行业、分场景培育一批原材料智能制造系统解决方案供应商、工业互联网服务供应商,遴选、发布供应商名录。针对原材料工业特点,形成一批数字化智能化系统解决方案。深化实施原材料生产企业工业互联网网络安全分类分级管理,推动商用密码技术应用,提升重点行业企业工业互联网安全防护能力。莱赛尔行业概况(一)莱赛尔制品简介莱赛尔制品为采用以木质纤维素为原料,以NMMO为溶剂的莱赛尔法制备的生物可降解材料。木质纤维素制品属于生物塑料(Bioplastics)范畴,生物塑料在2021年被欧盟列入面向未来100项重大突破(100RadicalInnovationBreakthroughsforFuture)之一。目前将木质纤维素溶解再成型制备纤维素制品的方法有三种,粘胶法、铜氨法和莱赛尔法。其中粘胶法主要用于制备粘胶纤维和玻璃纸(商业名称为赛璐玢),铜氨法主要用于制备内衣用纤维、透析膜和分离膜,这二种方法都存在不同程度的工艺缺陷及污染问题。相较之下,莱赛尔法最为经济、环保。莱赛尔法即木质纤维素不经过化学反应,直接溶解在NMMO水溶液中制成纤维素NMMO溶液(纺丝液),通过纺丝得到莱赛尔再生纤维素纤维,以得到莱赛尔纤维制品。同样纤维素NMMO溶液,也可以通过不同成型工艺方法,制备其它不同的纤维素制品,例如莱赛尔薄膜、莱赛尔木浆棉、莱赛尔海绵等。目前商业化最为成功的莱赛尔制品是莱赛尔纤维。莱赛尔制品具备低碳绿色安全的属性。其原材料木质纤维素是地球上最丰富的生物质资源,所用的NMMO溶剂无毒且可回收循环利用,产品可降解且降解产物不会对环境和人体产生危害。因此具备可观的市场前景。(二)莱赛尔纤维行业简介莱赛尔纤维是莱赛尔制品中商业化最为成功的一员,兼具天然纤维和合成纤维的多种优良性能,在干燥及湿润状态下均可展现出较好的韧性,其吸湿性好、悬垂性好、易染色、耐磨性强、可纺性高,兼具棉的透气性和舒适性、涤纶的强度、真丝的光泽与触感,因而其在服装、工业等领域具有较为广泛的应用。莱赛尔纤维被誉为21世纪绿色纤维。来源于自然界的天然纤维在一定程度上变化小,合成纤维来源于不可再生资源石油的炼化合成,而再生纤维得益于原料的广泛,具备良好发展前景。再生纤维素纤维是以天然纤维素(棉、麻、竹子、树、灌木)为原料,不改变它的化学结构,仅仅改变天然纤维素的物理结构,从而制造出来性能更好的再生纤维素纤维。再生纤维素纤维包含了粘胶纤维、莫代尔纤维、莱赛尔纤维等以纤维素为主要成分,而且性能各异的多种纤维。其中:1)粘胶纤维是最早诞生且应用最为广泛的再生纤维素纤维,但因生产中污染非常严重、纤维模量低、强度差,国家已经开始限制粘胶纤维的发展;2)莫代尔纤维由产自欧洲的灌木林制成木质浆液后经过专门的纺丝工艺制作而成,因具有很好的柔软性、优良的吸湿性,但其存在织物挺括性差的特点,大多用在内衣的生产;3)莱赛尔纤维是再生纤维素纤维中诞生最晚,但生产过程最为环保的纤维。我国化纤行业正处在科技创新、转型升级的关键时期,需要绿色、可持续发展技术促进行业长久快速发展。绿色制造可以摆脱化纤行业对石化等不可再生资源的依赖,是未来行业发展趋势。随着绿色生活,从纤维开始的消费理念不断推行,绿色纤维将成为化纤行业不可或缺的分支。我国化纤行业从2016年起就推出了绿色纤维标志,认证产品覆盖再生聚酯、莱赛尔纤维、壳聚糖纤维、PTT纤维、原液着色纤维等。其中,莱赛尔纤维作为新型再生纤维素纤维,被誉为人造纤维皇冠上的明珠。目前,从全球来看,兰精是莱赛尔纤维领域的绝对领导者,莱赛尔纤维品牌名为天丝,其在泰国建有全球最大产能的莱赛尔纤维工厂。我国是莱赛尔纤维的主要消费国之一,国内产能远无法满足本地市场的需求。但在国家政策的支持下,近年我国纤维厂商纷纷布局莱赛尔纤维,推出自有品牌。如保定天鹅作为最早实现莱赛尔纤维产业化生产的中国企业,推出的元丝作为其生产的莱赛尔纤维品牌;山东金英利新材料科技股份推出莱赛尔纤维品牌瑛赛尔等,2021年也被市场称为中国莱赛尔元年。NMMO是一种对纤维素具有极强溶解性能的叔胺氧化物,其能够使纤维素浆粕直接溶解制得莱赛尔纤维,是莱赛尔纤维生产过程中的核心原材料。高浓度的NMMO溶液在常温下为结晶的固体,考虑运输和储存的安全及使用方便性等因素,NMMO产品通常为50%的水溶液,溶液呈无色透明或淡黄色,化学性能稳定。NMMO作为纤维素纤维的溶剂,其毒性低于酒精,且大部分可回收利用。目前回收工艺包括絮凝、过滤、吸附、离子交换、H2O2氧化、紫外光照射等多种。我国莱赛尔纤维生产中使用的NMMO溶剂需要从国外进口,能够提供NMMO的主要为印度的APL。当前国内已有十余家企业布局NMMO溶剂,因NMMO在产品纯度、金属离子含量、致癌物N-亚硝基吗啉含量等方面要求极为苛刻,产品提纯工艺难度大,大部分企业的产品在数量和质量上尚不能满足莱赛尔纤维生产的需求。莱赛尔纤维行业在NMMO的纯化回收等技术方面亟待提升。(三)莱赛尔纤维行业的发展前景1、NMMO随着莱赛尔纤维行业的快速发展需求量激增据统计,2020年全球莱赛尔纤维行业销售额已突破10亿美元,预计2027年全球市场将突破22亿美元,预测复合年均增长率约12%。据TheFiberYear2021统计,2020年全球莱赛尔纤维产量约25-30万吨,约占再生纤维素纤维的4.6%。从我国来看,莱赛尔纤维属于国家战略性新兴产业,工艺装备先进、绿色环保、可实现资源循环利用,符合国家十四五规划纲要的发展方向,被列为《中国制造2025》绿色制造重点发展方向。2021年,我国已经建成的莱赛尔纤维产能达到28万吨,同比增长为37.93%,总产量约为9.9万吨,同比增长为118.90%,产能与产量的双双增长说明我国莱赛尔纤维正处于快速扩张的进程中;2021年,我国莱赛尔纤维进口量为8.89万吨,同比增长15.66%,出口量为0.78万吨,同比增长63.03%,我国表观需求量达到17.61万吨,我国对莱赛尔纤维的需求量正在进入快速增长期,同时已打开国际市场。由于莱赛尔纤维应用前景较好,吸引众多企业布局,除了当前市场中实现生产的保定天鹅、赛得利(常州)纤维、亚太森博(山东)浆纸、中纺院绿色纤维等企业,还有众多企业计划投产。根据新思界产业研究中心统计,目前国内莱赛尔纤维在建及规划产能达到310万吨左右,为现有产能的十倍以上。随着国内莱赛尔纤维产能逐步释放,下游市场空间增大,行业产品NMMO的需求量将大幅上升。2、NMMO纯化回收技术的提升推动莱赛尔纤维行业的发展目前限制莱赛尔纤维行业发展的因素之一是生产过程中的NMMO难以高效地纯化回收。莱赛尔制品生产过程中产生的含有杂质的NMMO稀溶液(称为凝固浴),需要经过纯化回收其中的NMMO,返回生产中回用。目前凝固浴中NMMO的纯化回收技术大多采用离子交换树脂法,但采用离子交换树脂法纯化回收凝固浴中的NMMO存在一定弊端,如离子交换树脂失效后的再生不可避免地会产生高盐高COD废水,废离子交换树脂被列为危险废物。此外,该方法不能完全脱除凝固浴NMMO溶液中的包括糖类在内的多种杂质,对莱赛尔纤维大规模的生产、浆粕的使用以及纤维的质量等均存在一定影响,同时限制了对凝固浴中回收的NMMO纯度要求更高的莱赛尔制品(如莱赛尔长丝、莱赛尔薄膜等)的发展。针对以上工艺问题,莱赛尔纤维生产凝固浴中NMMO的新型纯化回收工艺,采用膜分离和结晶工艺技术,可以解决离子交换树脂法纯化回收工艺存在的NMMO纯度较低、产生一定量高盐高COD废水和废离子交换树脂等问题。整个纯化回收工艺几乎不产生废水,三废实现近零排放,回收的NMMO纯度高,回收成本低。莱赛尔纤维行业在快速发展的过程中,工艺技术日益成熟,并伴随着更多莱赛尔制品实现商业化的可能,将直接带动行业产品及技术在行业中的发展。(四)莱赛尔行业市场需求测算中国经济进入以碳达峰、碳中和为目标的绿色发展阶段,新材料已成为重点发展对象。莱赛尔纤维以丰富易得的可再生资源为原料,同时有着清洁化的生产工艺、优异的物化性能和弃后可生物降解等综合优势,发展前景广阔。莱赛尔纤维在《纺织行业十四五发展纲要》《纺织行业十四五绿色发展指导意见》等指导性文件中被列入重点专项,也是化纤行业绿色制造重点发展的三大绿色纤维生物基化学纤维中的核心品种。因NMMO为莱赛尔纤维生产过程中必不可少的核心原材料,莱赛尔纤维产出与NMMO投入的比例约为100:5,故通过对莱赛尔纤维市场的测算对NMMO进行市场空间定量分析,基于以下信息:1)2022年4月21日,工业和信息化部、国家发展和改革委员会发布《关于化纤工业高质量发展的指导意见》,提出到2025年绿色纤维占比提高到25%以上,生物基化学纤维和可降解纤维材料产量年均增长20%以上。莱赛尔纤维作为生物基化学纤维和可降解纤维材料的重要品种的定位是明确的。2)根据中国棉纺织行业协会和中国化学纤维工业协会调研数据。在再生纤维素纤维品种中,粘胶短纤维的占比最高,2021年我国产量387万吨,占比87%。然而粘胶纤维因污染等问题,其发展受到严重制约,先进国家已逐渐退出粘胶纤维市场,亚洲中韩国、日本已趋于逐步停止粘胶纤维生产的状态。2017年,工业和信息化部下发的《粘胶纤维行业规范条件(2017版)》和《粘胶纤维行业规范条件公告管理暂行办法》两个文件,从生产企业布局、工艺装备要求、资源消耗指标、环境保护等方面做出了相关规定,文件明确指出,严禁新建粘胶长丝项目,严格控制新建粘胶短纤项目。莱赛尔纤维弥补了传统再生纤维素纤维强度低、湿模量低和耐碱性差的不足,将成为国内传统粘胶短纤维产业转型升级的重点方向,可视为粘胶短纤维的替代品,市场占比将不断提高。如果仅满足高端纤维需求,我国莱赛尔纤维的需求量约为108万吨;如能满足高性价比的替代需求,则需求量可以放大到445万吨。2018年全球莱赛尔纤维需求量约100万吨/年,并持续以每年16-18%增长率稳定上升。综合来看,莱赛尔纤维行业的快速增长及投资力度,充分反映出其背后的经济价值与拓展空间,以国内莱赛尔纤维在建及规划产能310万吨左右作为基准估算,NMMO的潜在需求量在15万吨以上。现有估算仅限于NMMO在莱赛尔纤维领域的应用,未包含电子化学品领域的应用,以及更多莱赛尔制品商业化所带来的增长潜力。提高资源保障能力(一)合理开发国内矿产资源加大铁矿石、铜、钾等紧缺性矿产资源探矿力度,积极开展现有矿山深部及外围找矿。落实税收优惠政策,鼓励采取减少矿业固体废物产生的先进工艺和设备,高效集约利用低品位矿,鼓励综合利用复杂共伴生矿及矿山固废。划定生态保护红线等控制线时,与战略性矿产资源区域充分衔接。适当新建高标准矿山,强化国内矿产资源压舱石作用和基础保障能力。优化年度开采总量控制指标管理机制,科学调控稀土、钨等矿产资源的开采规模。完善矿产资源权益金政策。(二)拓展多元化资源供给渠道开发城市矿山资源,支持优势企业建立大型废钢及再生铝、铜、锂、镍、钴、钨、钼等回收基地和产业集聚区,推进再生金属回收、拆解、加工、分类、配送一体化发展。构建国家和企业共同参与,产品储备和资源地储备相结合的矿产资源储备体系。完善矿石交易市场体系,形成公开透明、公正合理的定价机制。推进矿产资源领域国际合作,按照平等互利、合作共赢原则,优化境外投资结构和布局,规范有序参与境外资源开发,增强矿产资源全球经略能力。鼓励轻烃等低碳石化原料进口。严格执行再生资源进口标准,推进优质再生资源进口。精细化工行业进入壁垒(一)精细化工行业资金壁垒精细化工行业的资金壁垒主要体现在三个方面:一是满足对产品技术创新研发的需求;二是达到规模经济效益需要达到的生产规模;三是安全及环保设备的投入。这些都需要进入企业在环保、安全、产品研发和经营规模等方面进行较大的投入,导致其初始及持续投入不断攀升。不具备一定规模的资金实力的小型精细化工企业将逐步被市场淘汰。因此,日益提高的固定资产和研发投入要求构成进入本行业的资金壁垒。(二)精细化工行业工艺技术壁垒精细化工行业对工艺技术要求较高,核心竞争力体现在产品的合成路线、核心催化剂的选择及艺流程的控制。关键性的技术创新可以使企业在特定细分领域具有很强的竞争力,拉开与其他竞争对手的差距,凭借更优的生产效率和成本优势迅速获取市场份额,形成对落后工艺的市场替代,并通过不断的研发创新,持续提升行业技术壁垒。精细化工行业技术研发人员除了需要具备专业的学术背景,还需要多年研发和生产的实践积累经验。精细化工产品种类多、适用广泛,还需要企业具有较强的研发能力和新技术、新品种储备。综上所述,精细化工企业要进入市场并长期发展就必须具有较强的产品研发能力以及长期的生产技术积累,这些方面都构成了行业的技术壁垒。(三)精细化工行业节能环保壁垒节能减排已经是行业未来发展的主导方向,随着国家节能环保政策的日趋严格,新进入的企业不但需要投入更多的环保经费,更需要研制出采用绿色、低碳的合成工艺的产品。此外,国家通过化工园区化管理,对迁入化工园区的企业进行严格审查,要求其必须具有较强的环保意识及环保能力,大幅提升了行业的环保准入门槛。因此,精细化工行业具有较高的节能环保壁垒。(四)精细化工行业市场壁垒精细化工产品多是工业生产中的中间产品,此类产品与下游行业的产品联系程度较为紧密。因而下游客户一般对产品的质量稳定性要求较高,一旦选定供应商,一般不轻易更换。此外,采购方属于典型的专家采购模式,采购方有能力通过一系列的技术指标分析确定产品的质量水平。在实际采购过程中,影响交易是否成功的因素不仅有价格,还包括质量保证体系、售后服务水平、长期稳定的供货能力、协助下游客户提升应用技术水平的实力、企业自身的发展潜力等,是一个综合的评价体系。客户在确定其供应商前,一般需要进行前期样品分析、试验室小试生产
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 异构双腿机器人人工腿:步态规划策略与精准控制技术研究
- 带有状态延迟的约束输入非线性系统最优控制:理论、方法与应用
- 小洋口近岸污水排海的三维数学模型构建与影响评估
- 完型填空在中学英语测试中的多维应用与优化策略探究
- 教育信息化背景下的数字农业发展趋势研究
- 2025年小学教师资格考试《综合素质》教育资源整合与教育研究试题试卷
- 提升数字化工作场所中的团队协同能力
- 2025年小学教师资格考试《综合素质》教师礼仪与沟通模拟试题及答案解析
- 2025年中学教师资格考试《综合素质》教育法律法规综合测试题及答案解析
- 大班学生自我管理能力的培养计划
- 树立正确就业观课件
- 《在马克思墓前的讲话》课件+2023-2024学年统编版高中语文必修下册
- 第24届世界奥林匹克数学竞赛WMO省级测评五年级试卷【含答案】
- 2024Web网站渗透测试报告模板
- 2023年-2024年新《管理学原理》考试题库(含答案)
- 深圳市企业数据合规指引
- 精神科出院康复指导与随访
- RTO工艺流程简介
- 济南传统民居课件
- 医院感染预防与控制的基本概念和原则
- 2024年数字广西集团有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论