航空专英1教案第5章ForcesinFlight_第1页
航空专英1教案第5章ForcesinFlight_第2页
航空专英1教案第5章ForcesinFlight_第3页
航空专英1教案第5章ForcesinFlight_第4页
航空专英1教案第5章ForcesinFlight_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Ch.5Stabilityandcontrol

5.1Balanceandtrim

1,balanceinstraightandlevelflight

balance平篌亍see-saw杠杆bean梁

woodenbean木梁suspendedbean悬吊梁fulcrum支点

trim配平equilibrium平衡

controlcolumn才桑纵才干rudderpedal方向舵脚蹬

align,alignment成一直线

Figure2.2-1See-saw.

Figure2.2-2

Unbalanced

Figure2.2-3

Rebalanced

Figure2.2-4Rebalanced

Balanceconsistsoftwoelements-thetotalforcesactingthe

aircraftandthealignmentoftheseforces.Whentheforcesare

balancedandalignedtheaircraftissaidtobeinequilibrium.

Therearetwotypesofforces-staticforces,dynamicforces.

Weightisastaticforceitcanbeconsideredconstantatanytime.

Thrustvarieswithenginepower,propellerrpmandairspeedbut

canbesetataconstantvaluebythepilot.

Liftisaerodynamicforcewhichchangeswithairspeedandflap

extensionbutwhichcanbecontrolleddirectlybythepilotchanging

theangleofattack.

Dragchangeswithangleofattack,configurationandairspeed.

♦LLift(2,000units)

T:

hrust(200units);:「『二""brag(200units)

WWeight(2,000units)

Figure2.2-7

Liftbalancesweight.

3ndthrustbalancesdrag,instraightandlevelflight.

Instraightandlevelflight,liftopposesweightL=Wthrust

opposesdragT=D.

Theliftandweightwillonlydecreasegraduallyastheweight

decreaseswithfuelburn-off.Thethrustanddragwillvary

considerablydependingonangleofattackandthereforeairspeed.

2,pitchingmoment

Lift-

Nose-down

CGCP

Weighty

LiftAk

Weighty

Figure2.2-8

Lift-weightcouple

producesapitchingmoment.

Nose-upThrust

WNose-down

Figure2.2-9Thrust-dragcoupleproducesapitchingmoment

UndermostconditionsofflighttheCPandCGarenotcoincident,

i.e.arenotattheonepoint,causingnose-downpitchingmomentora

nose-uppitchingmoment.

Thedifferentlinesofactionofthethrustforceanddragforce

produceanothercouple,causinganose-downpitchingmomentora

nose-uppitchingmoment.

Ideallythepitchingmomentfromthetwocouplesshould

neutralizeeachotherinlevelflightsothatthereisnoresultant

momenttendingtorotatetheaircraft

ALift

Thrust-drag

couple

nose-up

Lift-weightFigure2.2-10

coupleLift-weightcoupleandthri

nose-downdragcoupleinequilibrium.

Weight▼

Figure2.2-11Verticallyoffsetthrustline

ALift

Thrust-drag

Thrusl-dragcouple

Icouple(Reduced

(nose-upnose-up

moment)moment)

▼Thrust

Lift-weigh!

couple

(nose-down

moment)Lift-weight

couple

(nose-down

Weight▼moment)

Figure2.2-12Followingalossofthrust,thelift-weightcouple,

3,thetailplane

horizontalstabilizer水平安定面

function功能,作用counteract平衡,中和

residual剩余的,neutralize抵消

coincident一致

Thrust

Balancing

aerodynamicforce

Weight''059EPS

Figure2.2-13

Thetailplaneprovidesthefinalbalancingmoment.

Thefunctionoftailplane(orhorizontalstabilizer)istocounteract

theseresidualpitchingmomentsfromthetwomaincouplesandto

dampedanyoscillationinpitch,i.e.ithasastabilizingfunction.

Thetailplaneusuallyhasasymmetricaloranegativelycambered

aerofoil.

Themomentproducedbythetailplanecanbevariedeitherby

movingtheelevatororbymovingtheentiretailplane.

Themomentarmoftailplaneisquitelong,andtheaerodynamic

forceprovidedbythetailplaneneedsonlytobesmalltohavea

significantpitchingeffect.

Theareaofthetailplaneissmallcomparedwiththemainplanes

(mainwings).

5.2Stability

Therearetwoelementsofstability,staticanddynamic,andforan

aircraft,itisusualtoseparatethemodesintothethreeaxesof

movement.

Thereislongitudinalstability,lateralstabilityanddirectional

stability.

Thereisaninseparablerelationshipbetweenlateraland

directionalstability.

5.2.1Staticstabilityanddynamicstability

1,Staticstability

Oscillation

Disturbed

Released

Figure2.2-14Staticanddynamicstability

Thestaticstabilityoftheaeroplanedescribesitstendencyto

returnitsoriginalcondition(angleofattack)afterbeingdisturbed

andwithoutanyactionbeingtakenbythepilot.Thestrengthofthe

tendencyisthemeasureofitsstability.

2,Dynamicstability

remove取消,去除deadbeat非周期的,无振荡的

indefinitely无限地divergent发散

shortperiod短周期,longperiod,phugoid长周期,

Dynamicstabilityisconcernedwiththemotionofthebodyafter

thedisturbingforcehasbeenremoved.

Itisanoscillationwhichmaystopimmediately(well-dampedor

deadbeat),continuebutreduceslowly(slightlyorlightlydamped),

continueindefinitely(undamped)orgetworse(dynamically

unstableordivergentoscillation).

Imaginetheaircraftistrimmedinstraightandlevelflight,the

aircraftwillrespondtotheverticalgustbypitchingdownto

maintainitstrimmedangleofattack.

Thisoscillationisgenerallywell-dampedandreducestozeroin1

or2oscillation.Thedampingisprovidedbytheaironthehorizontal

areaoftheaircraft.Thepitchingoscillationisknownastheshort

periodpitchingoscillation(SPPO).

Theairspeedoftheaircraftmayalsochangeandthiscancausea

slower(longperiod)oscillationwheretheaircraftleisurely(慢慢

地)followsapathwheretheairspeedandaltitudeareexchanged.

Theslowmotioniscalledthephugoid.

3,thethreereferenceaxes

Centreof

gravity(CG)

Normal

(verticalaxis)

WAEFS

Figure2.2-15

Angularmotioncanoccuraboutthreeaxes.

Werefer。三类)themotionoftheaircrafttomotionabouteachof

threeaxes-eachpassingthroughthecentreofgravityandeach

mutuallyperpendicular(at90°toeachother).Thesearesometimes

calledbodyaxes.

Figure2.2-16Rollingaboutthelongitudinalaxis.

Figure2.2-17Pitchingaboutthelateralaxis.

Yawingplane

ofmotion

Figure2.2-18Yawingaboutthenormalaxis.

Stabilityaroundthelongitudinalaxisisknownaslateralstability.

Stabilityaroundthelateralaxisisknownaslongitudinalstability.

Stabilityaroundthenormalaxisisknownasdirectionalstability.

Rotationaroundapointoraxisiscalledangularmotion;the

numberofdegreesofrotationiscalledangulardisplacement,andthe

speedwithwhichitoccurs,angularvelocity.

Themotionofanaircraftisbestconsideredineachoftheplanes

separately,althoughtheactualmotionoftheaircraftisalittlemore

complex.Forexamplepollingintoalevelturntheaircraftwillnot

onlyrollbutalsopitchandyaw.

Wewillconsiderlongitudinalstabilityfirst,thendirectional

stabilityandlateralstability.Rollandyawarecloselyconnected.

5.2.2Longitudinalstability

inbuilt固有的,内在的,dart飞镖,arrow箭

Tobelongitudinalstable,anaircraftmusthaveanaturalorinbuilt

tendencytoreturntothesameangleofattackafteranydisturbance

withoutanycontrolinputbythepilot.

Iftheangleofattackissuddenlyincreasedbyadisturbance,then

forcewillbeproducedthatwilllowerthenoseanddecreasethe

angleofattack.

1,thetailplaneandlongitudinalstability

RestoringNose-down

aerodynamicpitchingmoment

Figure2.2-20Longitudinalstabilityfollowingan'uninvited'nose-uppitch.

Gust

Nose­

down

Figure2.2-21Longitudinalstabilityfollowingan,unmvited,nose-downpitch.

Ifadisturbance,suchasagust,changestheattitudeoftheaircraft

bypitchingitnoseup,thetailplanewillbepresentedtotherelative

airflowatagreaterangleofattack.Thiswillcausethetailplaneto

produceupward,ordecreased,aerodynamicforce,whichisdifferent

tothatbeforethedisturbance.Thealteredaerodynamicforcegivesa

nose-downpitchingmoment,tendingtoreturntheaeroplanetoits

originaltrimmedcondition.

Example:thetailfinofadartoranarrow.

Figure2222longitudinalstabilityisprovidedbythe(ailfinsofadan

2,theCGandlongitudinalstability

Figure2.2-23AtforwardCG-greaterlongitudinalstability-longermomentarm.

ThefurtherforwardtheCGoftheaircraft,thegreaterthemoment

armforthetailplane,andthereforethegreatertheturningeffectof

thetailplaneliftforce.

AforwardCGleadstoincreasedlongitudinalstabilityandaft

movementoftheCGleadstoreducedlongitudinalstability.

Themorestabletheairplane,thegreaterthecontrolforcethatyou

mustexerttocontrolormovetheairplaneinmanoeuvers,whichcan

becometiring.

Thetailplaneprovidesstaticlongitudinalstability.

3,designconsideration

Tailplanedesignfeaturesalsocontributegreatlytolongitudinal

stability-tailplanearea,distancefromthecentreofgravity,aspect

ratio,angleofincidenceandlongitudinaldihedralareconsideredby

thedesigner.

Athighangleofattackthemainplanemayshieldthetailplaneor

causetheairflowoverittobeturbulent.Thiswilldecrease

longitudinalstability.

5.2.3Directionalstability

Directionalstabilityofanaeroplaneisitsnaturalorinbuiltability

torecoverfromadisturbanceinyawingplanewithoutanycontrol

inputbythepilot

Iftheaircraftisdisturbedfromitsstraightpathbythenoseortail

beingpushedtooneside(i.e.yaw).

Theverticalfin(ortailorverticalstabilizer)issimplya

symmetricalaerofoil.Asitisnowexperiencinganangleofattack,it

willgenerateasidewaysaerodynamicforcewhichtendstotakethe

finbacktoitsoriginalposition.

Uninvitedyaw

Figure2.2*24Directionalstabilityfollowingaskid

Thepowerfulmoment(turningeffect)oftheverticalfin,duetoits

largeareaandthelengthofitsmomentarmbetweenitandcentreof

gravity,iswhatrestoresthenosetoitsoriginalposition.

ThegreaterthefinareaandkeelsurfaceareabehindtheCG,and

thegreaterthemomentarm,thegreaterthedirectionalstabilityof

theaeroplane.

Thefinprovidesdirectionalstaticstability.

Astheyawcausesrollingmomentsothatbehavioroftheaircraft

withyawandsideslipinvolvesbothitsdirectionalstabilityandits

lateralstability.

5.2.4Lateralstability

Lateralstabilityisthenaturalorinbuiltabilityoftheaeroplaneto

recoverfromadisturbanceinthelateralplane,i.e.rollingaboutthe

longitudinalaxiswithoutanycontrolinputbythepilot.

Adisturbanceinrollwillcauseonewingtodropandtheotherto

rise.Whentheaeroplaneisbanked,theliftvectorisinclinedand

producesasideslipintotheturn.

Asaresultofthissideslip,theaeroplaneissubjectedtoa

sidewayscomponentofrelativeairflow.Thisgeneratesforcesthat

producesarollingmomenttorestoretheaeroplanetoitsoriginal

wings-levelposition.

1,wingdihedral

Figure2.2-27

Positivedihedral

correctsuninvitedbank.

Eachwingisinclinedupwardsfromthefuselagetothewingtip,

andaddstothelateralstabilitycharacteristicsoftheaeroplane.

Positivewingdihedralincreaseslateralstability.

Astheaircraftsideslips,thelowerwing,duetoitsdihedral,will

meettheupcomingrelativeairflowatagreaterangleofattackand

willproduceincreasedlift.

Theupperwingwillmeettherelativeairflowatalowerangleof

attackandwillthereforeproducelesslift.Itmaybeshielded

somewhatbythefuselage,causinganevenlowerlifttobe

generated.

Therollingmomentsoproducedwilltendtoreturntheaircraftto

itsoriginalwings-levelposition.

Figure2.2-28

Anhedralonahigh-mountedsweptwing.

Negativedihedral,oranhedralhasadestabilizingeffect.Insome

aircraftwithahigh-mountedsweepwing,anhedralisusedto

compensateforexcessivelateralstability.

2,wingsweepback

Thewingcanaddtolateralstabilityifithassweepback.Asthe

aircraftsideslipsfollowingadisturbanceinroll,thelower

sweepbackwinggeneratesmoreliftthantheupperwing.Thisis

becauseinthesideslipthelowerwingpresentsmoreofitsspanto

theairflowandhighervelocitythantheupperwingandthereforethe

lowerwinggeneratesmoreliftandtendstorestoretheaeroplanetoa

wing-levelposition.

3,highkeelsurfacesandlowCG

Figure1-31(RighUFinandrudder

Figure1-40KeelsurfaceareachangeswithCGposition.

Inthesideslipthatfollowsadisturbanceinroll,ahighsideways

draglinecausedbyhighkeelsurfaces(highfin,aT-tailhighonthe

fin,highwings,etc.)andalowCGwillgivearestoringmoment

tendingtoraisethelowerwingandreturntheaircrafttothe

originalwings-levelposition.

Figure2.2-30

HighkeelsurfacesandalowCGcorrectuninvitedbank.

4,high-wingaroplane

Ifagustcausesawingtodrop,theliftforceistilted.Theresultant

forceswillcausetheaircrafttosideslip.Theairflowstrikingthe

upperkeelsurfaceswilltendtoreturntheaircrafttothewings-level

condition.

Ahigh-wingaroplaneincreaseslateralstability,ithaslessdihedral

comparedtoamid-or-lowwingdesign.

Figure2.2-31

Pendulumstabilitytends

5,lateralanddirectionalstabilitytogether

1)rollfollowedbyyaw滚转引起偏航

Forlateralstability,itisessentialtohavethesideslipthatthe

disturbanceinrollcauses.

Figure2.2-32Rollcausessideslip,whichcausesyaw.

Thesideslipexertsaforceonthesideorkeelsurfacesofthe

aircraft,which,iftheaircraftisdirectionallystable,willcauseitto

yawitsnoseintotherelativeairflow.Therollhascausedayawin

thedirectionofthesideslipandtheaeroplanewillturnfurtheroffits

originalheadinginthedirectionofthelowerwing.

Thelateralstabilitycharacteristicsoftheaeroplane,suchas

dihedral,causethelowerwingtoproduceincreasedliftandtoreturn

theaircrafttothewings-levelposition.

Therearetwoeffectsinconflicthere:

Thedirectionallystablecharacteristics(largefin)wanttosteepen

theturnanddropthenosefurther.

Thelaterallystablecharacteristics(dihedral)wanttolevelthe

wing.

spiralmode螺旋模态,Dutchroll荷兰滚

right矫正,best极力,wallow摇摆

Ifthefirsteffectwinsout,i.e.strongdirectionalstabilityandweak

lateralstability(largefinandnodihedral),thentheaircraftwilltend

tobankfurtherintothesideslip,towardsthelowerwingwithnose

continuingtodrop,untiltheaeroplaneisinaspiraldive.Thisis

calledspiralinstability,orthespiralmode.

Ifthelateralstability(dihedral)isstronger,theaircraftwillright

itselftowings-level,andifthedirectionalstabilityisweak(small

fin)theaircraftmayshownotendencytoturninthedirectionof

sideslip,andcausingthewallowingeffect,Dutchroll,whichisbest

avoided.

2)yawfollowedbyroll偏航引起滚转

Figure2.233Yawcausesrollandsideslipandfurtherroll

Iftheaircraftisdisplacedinyaw,itiscancausesideslip.This

sideslipwillcausethelateralstabilitycharacteristicsoftheaircraft's

wing,suchasdihedral,sweepbackorhigh-wing.Thiscausesa

rollingmomentthatwilltendtoraisetheforwardwing,resultingin

theaircraftrollingtowardsthetrailingwingandawayfromthe

sideslip.

Theaircraft'sinherentdirectionalstability(fromthefin)willtend

toweathercockoryawtheaircraftinthedirectionofsideslip.

3)stabilitycharacteristicsandaeroplanecontrol

Ifthedirectionalstabilityispoor(smallfin)andthelateral

stabilityisgood(dihedral)itcancauseDutchroll(rolling/yawing

oscillation).Oftentheaircraftisfittedwithayawand/orroll

damper(asmallcontrolsurfacedrivenbyarategyro)tostopthe

oscillation.Itisuncomfortableforthepilotandpassengers.

Ifthedirectionalstabilityisdominant(largefin)andthelateral

stabilitynotsostrong,itcancausespiralinstabilityorspiralmode.

rategyro阻尼陀螺,dominant占优势,占主导地位

6,Stabilityontheground

tipover翻倒,taxing滑行,groundloop地转

skid空转,brake刹车,wheel车轮

runway跑道

Thecentreofgravity(CG)mustliesomewhereinthearea

betweenthewheelsatalltimesontheground,otherwisethe

Centreof

gravity

Figure2.2-34TheCGmustremainwiihintheareaboundedbythewheels.

aeroplnewilltipover-forwardsorbackwards.

Track

ApplyleftrudderWeathercocking

tocounleraclthistendency

crosswindand

maintainthedesired

trackalongtherunway.

Wind

Rudderdeflected

u,/tocounteractyaw

Figure2.2-35Weathercocking.

5.3Control

Thecontrolsurfacesarethemeansbywhichthepilotovercome

thestaticstabilityoftheaircraftandcausesachangeinflightpathor

achangeintrimmedconditions.

Figure2.2-36

Theprimarycontrolsurfaces-elevator,aileronsandrudder.

Usuallytherearethreesetsofprimarycontrolsystemandthree

setsofcontrolsurfaces:

•theelevatorforlongitudinalcontrolandbalanceinpitch,operated

byforeandaftmovementofthecontrolwheelorcolumn;

•theaileronsforlateralcontrolandbalanceinroll,operatedby

rotationofthecontrolwheelorsidewaysmovementofthecontrol

column;

•therudderfordirectionalcontrolandbalanceinyaw,operatedby

therudderpedals.

Ideallyeachsetofcontrolsurfacesshouldproduceamoment

aboutonlyoneaxisbut,inpractice,momentsaboutotheraxesare

oftenproducedaswell,e.g.ailerondeflectiontostartarollmayalso

causeadverseyaw.

Thedeflectionofthecontrolsurfaceschangestheairflowandthe

pressuredistributionoverthewholeaerofoilandnotjustoverthe

controlsurfaceitself.

Theeffectistochangetheliftproducedbythetotalaerofoil­

controlsurfacecombination.

Anaeroplanewithtoomuchstabilitydesignedintoithaslimited

controllability.Thedesignermustachieveareasonablebalance

betweenstabilityandcontrollability.

Forinstance,apassengeraircraftwouldrequiremorestability,

whereasafighterwouldbenefitfromgreatercontrollabilityand

manoeuvrability.

5.3.1Pitchcontrol

1,Elevator

Upwardaerodynamic

,ControlcolumnControlcolumnforce/—j

丁backUpforward/T

elevator

Nose

Nose%一_~^75^down

Down

elevator

Downward

a029A

Figure2.2-37Theelevatoristheprimarypitchingcontrol

Theprimarycontrolofangleofattackistheelevator.

Thepilotmovestheelevatorbyfore-and-aftmovementofthe

controlcolumn.

Whenthecontrolcolumnismovedforward,theelevatorsmove

downwards,changingtheoverallshapeofthetailplane-elevator

aerofoilsectionsothatitprovidesanalteredaerodynamicforce.

TheeffectistocreateapitchingmomentabouttheCGofthe

aircraftthatmovesthenosedown.

Whenthecontrolcolumnispulledback,theelevatormovesup

andanalteredforceisproducedbytailplane-elevatoraerofoil,

causingthenoseoftheaircrafttopitchup.

Thestrengthofthetailmomentdependsontheforceitproduces

andthelengthofthearmbetweenitandtheCG.Theforcegenerated

bythetailplane-elevatorcombinationdependsontheirrelativesize

andshape,thetailplanebasicallycontributingtostabilityandthe

elevatortocontrol.

Thelargertherelativesizeoftheelevator,themorethecontrol.

Toretainsatisfactoryhandlingcharacteristicsandelevator

effectivenessthroughoutthedesiredspeedrange,thepositionofthe

CGmustbekeptwithintheprescribedrange.

TheforwardallowablelimitoftheCGisdeterminedbythe

amountofpitchcontrolavailablefromtheelevator.

TheaftlimitoftheCGisdeterminedbytherequirementof

adequatelongitudinalstability.

Steadyflightatalowspeedandahighangleofattackwillrequire

significantup-elevator,andbackwardpressureonthecontrol

column,tokeepthenoseup.

Steadyelevatordeflectionatdifferentspeeds.、

Atahighcruisespeedtherewillneedtobeasteadydown

deflectionoftheelevatortokeepthenosedownandmaintainalow

angleofattack,henceasteadyforwardpressureonthecontrol

column.

2,Thestabilatororall-flyingtail

Figure2.2-40Separatetailplaneplusmovingelevator(left),andstabilatororall-flymgtail(right).

Somedesignerschoosetocombinethetailplaneandelevatorinto

theonesurfaceandhavethewholetail-planemovable-knownasthe

allmovingtail,theflyingtailortheslabtail.

Whenthecontrolcolumnismovedtheentire'slab'moves.

5.3.2Rollcontrol

1,Ailerons

Theprimarycontrolinrollistheailerons.Theaileronsare

usuallypositionedontheoutboardtrailingedgeofthemainplanes.

Theaileronsactinopposingsenses,onegoesupastheothergoes

down,sothattheliftgeneratedbyonewingincreasesandthelift

generatedbytheotherwingdecreases.

Aresultantrollingmomentisexertedontheaeroplane.

Themagnitudeofthisrollingmomentdependsonthemoment

armandthemagnitudeofthedifferingliftforces.

•Thedowngoingaileronisontheupgoingwing.

•Theupgoingaileronisonthedowngoingwing.

2,Adverseaileronyaw

Deflectinganailerondowncausesaneffectiveincreaseincamber

ofthatwingandanincreaseintheeffectiveangleofattack.Thelift

fromthatwingincreases,butunfortunatelysodoesthedrag.Asthe

otheraileronrises,theeffectivecamberofthatwingisdecreasedand

itsangleofattackisless,thereforeliftfromthatwingdecreases,as

doesthedrag.

Rollright

Sameamountof

ailerondeflection

Rearview

Figure2.2-42Downwardaileronhasincreaseddrag-adverseyaw.

Thedifferingliftforcecausestheaircrafttobankoneway,but

thedifferentialailerondragcausesittoyawtheotherway.

/'一隔I

'.^一jIncreaseddeflection

ofupgoingaileron

Differentialailerons

Figure2.2-43Differentialaileronsequaliseailerondrag,reducingadverseyaw.

Adverseaileronyawcanbereducedbygooddesignincorporating

differentialailerons,Friseailerons,orcouplingtheruddertothe

ailerons.

Lift

Figure2.2-44Frise-typeaileronsequaliseailerondragandreduceadverseyaw

・Differentialailerons(差动)aredesignedtominimizeadverse

aileronyawbyincreasingthedragonthedowngoingwingonthe

insideoftheturn.Thisisachievedbydeflectingtheupwardaileron

throughagreateranglethanthedownwardaileron.

・Friseaileronsincreasethedragofthedescendingwingonthe

insideoftheturn.Astheailerongoesup,itsnoseprotrudesintothe

airstreambeneaththewingcausingincreaseddragonthedowngoing

wing.

Ontheotherway,thewingisrising,thenoseofthedowngoing

ailerondoesnotprotrudeintotheairstream,socausenoextradrag.

Frise-typeaileronsmayalsobedesignedtooperatedifferentially,to

incorporatethebenefitofdifferentialailerons.

•Coupledaileronsandruddercausetheruddertomove

automaticallyandyawtheaeroplaneintobank,opposingtheadverse

yawfromtheailerons.

Theprimaryeffectofrudderistoyawtheaeroplane,andthe

secondaryeffectistorollit.Theprimaryeffectofaileronsistoroll

theaeroplane,andthesecondaryeffectistoyawit.

3,Rollisfollowedbyyaw滚转引起偏航

Thesecondaryeffectofaileronsistocauseyaw.

Whentheaeroplaneisbankedusingtheailerons,theaeroplane

willslip.Asaresultofthesideslip,theairflowwillstrikethesideof

theaeroplaneandthelargekeelsurface(rearfuselageandfin),

whicharemainlybehindtheCG,causethenoseoftheaeroplaneto

yawinthedirectionofbank.

Figure2.2-46Rollisfollowedbyyaw.

5.3.3Yawcontrol

1,Rudder

Figure2.2-55Leftrudderpressure-noseyawsleft.

Theprimarycontrolintheyawingistherudder.Therudderis

hingedtother

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论