




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面向量应用举例平面几何中的向量方法平面几何中的向量方法向量概念和运算,都有明确的物理背景和几何背景。当向量与平面坐标系结合以后,向量的运算就可以完全转化为“代数〞的计算,这就为我们解决物理问题和几何研究带来极大的方便。由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何的许多性质,如平移、全等、相似、长度、夹角都可以由向量的线性运算及数量积表示出来,因此,利用向量方法可以解决平面几何中的一些问题。问题:平行四边形是表示向量加法与减法的几何模型。如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?ABCD猜测:1.长方形对角线的长度与两条邻边长度之间有何关系?2.类比猜测,平行四边形有相似关系吗?例1、证明平行四边形四边平方和等于两对角线平方和ABDC已知:平行四边形ABCD。求证:解:设,则
∴〔1〕建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;常设基底向量或建立向量坐标。〔2〕通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;〔3〕把运算结果“翻译〞成几何元素。用向量方法解决平面几何问题的“三步曲〞:简述:形到向量向量的运算向量和数到形例2如图,平行四边形ABCD中,点E、F分别是AD、
DC边的中点,BE、
BF分别与AC交于R、
T两点,你能发现AR、
RT、TC之间的关系吗?ABCDEFRT猜测:AR=RT=TC又因为共线,所以设因为所以ABCDEFRT解:设则由于与共线,故设线,故AT=RT=TCABCDEFRT练习1、证明直径所对的圆周角是直角ABCO如图所示,已知⊙O,AB为直径,C为⊙O上任意一点。求证∠ACB=90°分析:要证∠ACB=90°,只须证向量,即。解:设则,由此可得:即,得∠ACB=90°思考:能否用向量坐标形式证明?练习2平行四边形ABCD中,E为AB的中点,用向量方法,求EF:FD的值(可选为基底)ABCDEF简解:设又因为A、F、C共线,可设由向量相等知识得所以EF:FD=1:2问题提出1.用有向线段表示向量,使得向量可以进行线性运算和数量积运算,并具有鲜明的几何背景,从而沟通了平面向量与平面几何的内在联系,在某种条件下,平面向量与平面几何可以相互转化.2.平行、垂直、夹角、距离、全等、相似等,是平面几何中常见的问题,而这些问题都可以由向量的线性运算及数量积表示出来.因此,平面几何中的某些问题可以用向量方法来解决,但解决问题的数学思想、方法和技能,需要我们在实践中去探究、领会和总结.平面几何中探究〔一〕:推断线段长度关系思考1:如图,在平行四边形ABCD中,已知AB=2,AD=1,BD=2,那么对角线AC的长是否确定?ABCD思考2:设向量a,b,则向量等于什么?向量等于什么?=a+b,=a-b思考3:AB=2,AD=1,BD=2,用向量语言怎样表述?|a|=2,|b|=1,|a-b|=2.思考4:利用,若求需要解决什么问题?ABCDab思考5:利用|a|=2,|b|=1,|a-b|=2,如何求a·b?等于多少?思考6:根据上述思路,你能推断平行四边形两条对角线的长度与两条邻边的长度之间具有什么关系吗?平行四边形两条对角线长的平方和等于两条邻边长的平方和的两倍.思考7:如果不用向量方法,你能证明上述结论吗?探究〔二〕:推断直线位置关系思考1:三角形的三条高线具有什么位置关系?交于一点思考2:如图,设△ABC的两条高AD与BE相交于点P,要说明AB边上的高CF经过点P,你有哪些办法?ABCDEFP证明PC⊥AB.
c·(a-b)=0.思考3:设向量a,b,c,那么PC⊥BA可转化为什么向量关系?ABCDEFPabc思考4:对于PA⊥BC,PB⊥AC,用向量观点可分别转化为什么结论?a·(c-b)=0,b·(a-c)=0.思考5:如何利用这两个结论:a·(c-b)=0,b·(a-c)=0推出c·(a-b)=0?思考6:你能用其它方法证明三角形的三条高线交于一点吗?ABCDEFP探究〔三〕:计算夹角的大小思考1:如图,在等腰△ABC中,D、E分别是两条腰AB、AC的中点,若CD⊥BE,你认为∠A的大小是否为定值?ABCDE三角形.gsp思考2:设向量a,b,可以利用哪个向量原理求∠A的大小?ABCDEab思考3:以a,b为基底,向量,如何表示?ABCDEab思考4:将CD⊥BE转化为向量运算可得什么结论?
a·b=(a2+b2)思考5:因为△ABC是等腰三角形,则|a|=|b|,结合上述结论:a·b=(a2+b2
),cosA等于多少?ABCDEab理论迁移例1如图,在平行四边形ABCD中,点E、F分别是AD、DC的中点,BE、BF分别与AC相交于点M、N,试推断AM、MN、NC的长度具有什么关系,并证明你的结论.ABCDEFMN
结论:AM=MN=NC
三等分.gsp例2如图,△ABC的三条高分别为AD,BE,CF,作DG⊥BE,DH⊥CF,垂足分别为G、H,试推断EF与GH是否平行.ABCDEFPGH
结论:EF∥GH
小结作业1.用向量方法解决平面几何问题的基本思路:几何问题向量化向量运算关系化向量关系几何化.2.用向量方法研究几何问题,需要用向量的观点看问题,将几何问题化归为向量问题来解决.它既是一种数学思想,也是一种数学能力.其中合理设置向量,并建立向量关系,是解决问题的关键.迷人的流星雨你来自何方,匆匆的你又去向何方?万有引力定律是这样被发现的!生活细节马虎不得!平面几何中的向量方法向量概念和运算,都有明确的物理背景和几何背景。当向量与平面坐标系结合以后,向量的运算就可以完全转化为“代数〞的计算,这就为我们解决物理问题和几何研究带来极大的方便。由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何的许多性质,如平移、全等、相似、长度、夹角都可以由向量的线性运算及数量积表示出来,因此,利用向量方法可以解决平面几何中的一些问题。问题提出1.用向量方法解决平面几何问题的根本思路是什么?几何问题向量化向量运算关系化 向量关系几何化.2.向量概念源于物理中的矢量,物理中的力、位移、速度等都是向量,功是向量的数量积,从而使得向量与物理学建立了有机的内在联系,物理中具有矢量意义的问题也可以转化为向量问题来解决.因此,在实际问题中,如何运用向量方法分析和解决物理问题,又是一个值得探讨的课题.向量在物理探究〔一〕:向量在力学中的应用思考1:如图,用两条成120°角的等长的绳子悬挂一个重量是10N的灯具,根据力的平衡理论,每根绳子的拉力与灯具的重力具有什么关系?每根绳子的拉力是多少?120°OCBA10N|F1|=|F2|=10NF1+F2+G=0思考2:两个人共提一个旅行包,或在单杠上做引体向上运动,根据生活经验,两只手臂的夹角大小与所耗力气的大小有什么关系?夹角越大越费力.思考3:假设两只手臂的拉力为F1、F2,物体的重力为G,那么F1、F2、G三个力之间具有什么关系?F1+F2+G=0.思考4:假设两只手臂的拉力大小相等,夹角为θ,那么|F1|、|G|、θ之间的关系如何?FF1F2Gθ思考5:上述结论说明,假设重力G一定,那么拉力的大小是关于夹角θ的函数.在物理学背景下,这个函数的定义域是什么?单调性如何?θ∈[0°,180°)思考6:|F1|有最大值或最小值吗?|F1|与|G|可能相等吗?为什么?θ∈[0°,180°)探究〔二〕:向量在运动学中的应用思考1:如图,一条河的两岸平行,一艘船从A处出发到河对岸,已知船在静水中的速度|v1|=10㎞/h,水流速度|v2|=2㎞/h,如果船垂直向对岸驶去,那么船的实际速度v的大小是多少?A|v|=㎞/h.思考2:如果船沿与上游河岸成60°方向行驶,那么船的实际速度v的大小是多少?v1v2v60°|v|2=|v1+v2|2=〔v1+v2〕2=84.思考3:船应沿什么方向行驶,才能使航程最短?v1v2vABC与上游河岸的夹角为78.73°.思考4:如果河的宽度d=500m,那么船行驶到对岸至少要几分钟?理论迁移例1一架飞机从A地向北偏西60°方向飞行1000km到达B地,然后向C地飞行,假设C地在A地的南偏西60°方向,并且A、C两地相距2000km,求飞机从B地到C地的位移.东CBA北西南位移的方向是南偏西30°,大小是km.例2一个物体受到同一平面内三个力F1、F2、F3的作用,沿北偏东45°方向移动了8m,|F1|=2N,方向为北偏东30°,|F2|=4N,方向为东偏北30°,|F3|=6N,方向为西偏北60°,求这三个力的合力所做的功.东F1北西南F2F3W
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理管理者外出学习汇报
- 离心泵的结构与工作原理技术培训课件3
- 大学课件色彩构成
- 小狐狸美术课件
- 第3章 图形标志设计
- 2025年江苏南通市一模语文作文解读及范文
- 如何确保安全管理中的有效性
- 广西壮族自治区钦州市第四中学2024-2025学年高一下学期3月考试历史试卷(含答案)
- 2024-2025学年度湖北省黄冈市黄梅县育才高级中学高一下学期3月月考历史试题(含答案)
- 探究密度知识
- 安全使用电风扇
- 人工智能伦理与社会影响的讨论
- 让改革创新成为青春远航的动力
- T-CSGPC 016-2023 文物建筑健康监测技术规范
- 医疗器械使用时的常见不良反应
- 车损险代位求偿及理算要点课件
- 高超声速飞行器气动设计挑战
- 网络安全法律知识培训
- 中国居民营养与慢性病状况报告
- 新生儿母婴早接触课件
- 煤矿井下设备安装工程专项方案
评论
0/150
提交评论