




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数构成乐音的是()A. B. C. D.2.已知函数是上的偶函数,是的奇函数,且,则的值为()A. B. C. D.3.设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为()A. B. C. D.4.已知是等差数列的前项和,若,,则()A.5 B.10 C.15 D.205.函数(其中,,)的图象如图,则此函数表达式为()A. B.C. D.6.如图所示,矩形的对角线相交于点,为的中点,若,则等于().A. B. C. D.7.如图所示是某年第一季度五省GDP情况图,则下列说法中不正确的是()A.该年第一季度GDP增速由高到低排位第3的是山东省B.与去年同期相比,该年第一季度的GDP总量实现了增长C.该年第一季度GDP总量和增速由高到低排位均居同一位的省份有2个D.去年同期浙江省的GDP总量超过了4500亿元8.设全集,集合,则=()A. B. C. D.9.若双曲线的渐近线与圆相切,则双曲线的离心率为()A.2 B. C. D.10.已知与分别为函数与函数的图象上一点,则线段的最小值为()A. B. C. D.611.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺12.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是()A.45 B.50 C.55 D.60二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,x5的系数是_________.(用数字填写答案)14.在矩形ABCD中,,,点E,F分别为BC,CD边上动点,且满足,则的最大值为________.15.某学校高一、高二、高三年级的学生人数之比为,现按年级采用分层抽样的方法抽取若干人,若抽取的高三年级为12人,则抽取的样本容量为________人.16.若正三棱柱的所有棱长均为2,点为侧棱上任意一点,则四棱锥的体积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是递增的等比数列,,且、、成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求数列的前项和.18.(12分)[选修4-4:极坐标与参数方程]在直角坐标系中,曲线的参数方程为(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若射线与曲线交于,两点,与曲线交于,两点,求取最大值时的值19.(12分)已知函数,设的最小值为m.(1)求m的值;(2)是否存在实数a,b,使得,?并说明理由.20.(12分)如图,在中,角的对边分别为,且满足,线段的中点为.(Ⅰ)求角的大小;(Ⅱ)已知,求的大小.21.(12分)2019年是中华人民共和国成立70周年.为了让人民了解建国70周年的风雨历程,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,,…,,并绘制了如图所示的频率分布直方图.(1)现从年龄在,,内的人员中按分层抽样的方法抽取8人,再从这8人中随机选取3人进行座谈,用表示年龄在)内的人数,求的分布列和数学期望;(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.22.(10分)已知在中,a、b、c分别为角A、B、C的对边,且.(1)求角A的值;(2)若,设角,周长为y,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由基本音的谐波的定义可得,利用可得,即可判断选项.【详解】由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波,由,可知若,则必有,故选:C【点睛】本题考查三角函数的周期与频率,考查理解分析能力.2、B【解析】
根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【详解】为上的奇函数,,而函数是上的偶函数,,,故为周期函数,且周期为故选:B【点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.3、C【解析】
设,求,作为的函数,其最小值是6,利用导数知识求的最小值.【详解】设,则,记,,易知是增函数,且的值域是,∴的唯一解,且时,,时,,即,由题意,而,,∴,解得,.∴.故选:C.【点睛】本题考查导数的应用,考查用导数求最值.解题时对和的关系的处理是解题关键.4、C【解析】
利用等差通项,设出和,然后,直接求解即可【详解】令,则,,∴,,∴.【点睛】本题考查等差数列的求和问题,属于基础题5、B【解析】
由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.【详解】解:由图象知,,则,图中的点应对应正弦曲线中的点,所以,解得,故函数表达式为.故选:B.【点睛】本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.6、A【解析】
由平面向量基本定理,化简得,所以,即可求解,得到答案.【详解】由平面向量基本定理,化简,所以,即,故选A.【点睛】本题主要考查了平面向量基本定理的应用,其中解答熟记平面向量的基本定理,化简得到是解答的关键,着重考查了运算与求解能力,数基础题.7、D【解析】
根据折线图、柱形图的性质,对选项逐一判断即可.【详解】由折线图可知A、B项均正确,该年第一季度总量和增速由高到低排位均居同一位的省份有江苏均第一.河南均第四.共2个.故C项正确;.故D项不正确.故选:D.【点睛】本题考查折线图、柱形图的识别,考查学生的阅读能力、数据处理能力,属于中档题.8、A【解析】
先求得全集包含的元素,由此求得集合的补集.【详解】由解得,故,所以,故选A.【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.9、C【解析】
利用圆心到渐近线的距离等于半径即可建立间的关系.【详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.10、C【解析】
利用导数法和两直线平行性质,将线段的最小值转化成切点到直线距离.【详解】已知与分别为函数与函数的图象上一点,可知抛物线存在某条切线与直线平行,则,设抛物线的切点为,则由可得,,所以切点为,则切点到直线的距离为线段的最小值,则.故选:C.【点睛】本题考查导数的几何意义的应用,以及点到直线的距离公式的应用,考查转化思想和计算能力.11、A【解析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:
沿上棱两端向底面作垂面,且使垂面与上棱垂直,
则将几何体分成两个四棱锥和1个直三棱柱,
则三棱柱的体积V1四棱锥的体积V2=13×1×3×2=2【点睛】本题考查三视图及几何体体积的计算,其中正确还原几何体,利用方格数据分割与计算是解题的关键.12、D【解析】
根据频率分布直方图中频率=小矩形的高×组距计算成绩低于60分的频率,再根据样本容量求出班级人数.【详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30,∴样本容量(即该班的学生人数)是60(人).故选:D.【点睛】本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、-189【解析】由二项式定理得,令r=5得x5的系数是.14、【解析】
利用平面直角坐标系,设出点E,F的坐标,由可得,利用数量积运算求得,再利用线性规划的知识求出的最大值.【详解】建立平面直角坐标系,如图(1)所示:设,,,即,又,令,其中,画出图形,如图(2)所示:当直线经过点时,取得最大值.故答案为:【点睛】本题考查了向量数量积的坐标运算、简单的线性规划问题,解题的关键是建立恰当的坐标系,属于基础题.15、【解析】
根据分层抽样的定义建立比例关系即可得到结论.【详解】设抽取的样本为,则由题意得,解得.故答案为:【点睛】本题考查了分层抽样的知识,算出抽样比是解题的关键,属于基础题.16、【解析】
依题意得,再求点到平面的距离为点到直线的距离,用公式所以即可得出答案.【详解】解:正三棱柱的所有棱长均为2,则,点到平面的距离为点到直线的距离所以,所以.故答案为:【点睛】本题考查椎体的体积公式,考查运算能力,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)设等比数列的公比为,根据题中条件求出的值,结合等比数列的通项公式可得出数列的通项公式;(Ⅱ)求得,然后利用裂项相消法可求得.【详解】(Ⅰ)设数列的公比为,由题意及,知.、、成等差数列成等差数列,,,即,解得或(舍去),.数列的通项公式为;(Ⅱ),.【点睛】本题考查等比数列通项的求解,同时也考查了裂项求和法,考查计算能力,属于基础题.18、(1)的极坐标方程为.曲线的直角坐标方程为.(2)【解析】
(1)先得到的一般方程,再由极坐标化直角坐标的公式得到一般方程,将代入得,得到曲线的直角坐标方程;(2)设点、的极坐标分别为,,将分别代入曲线、极坐标方程得:,,,之后进行化一,可得到最值,此时,可求解.【详解】(1)由得,将代入得:,故曲线的极坐标方程为.由得,将代入得,故曲线的直角坐标方程为.(2)设点、的极坐标分别为,,将分别代入曲线、极坐标方程得:,,则,其中为锐角,且满足,,当时,取最大值,此时,【点睛】这个题目考查了参数方程化为普通方程的方法,极坐标化为直角坐标的方法,以及极坐标中极径的几何意义,极径代表的是曲线上的点到极点的距离,在参数方程和极坐标方程中,能表示距离的量一个是极径,一个是t的几何意义,其中极径多数用于过极点的曲线,而t的应用更广泛一些.19、(1)(2)不存在;详见解析【解析】
(1)将函数去绝对值化为分段函数的形式,从而可求得函数的最小值,进而可得m.(2)由,利用基本不等式即可求出.【详解】(1);(2),若,同号,,不成立;或,异号,,不成立;故不存在实数,,使得,.【点睛】本题考查了分段函数的最值、基本不等式的应用,属于基础题.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由正弦定理边化角,再结合转化即可求解;(Ⅱ)可设,由,再由余弦定理解得,对中,由余弦定理有,通过勾股定理逆定理可得,进而得解【详解】(Ⅰ)由正弦定理得.而.由以上两式得,即.由于,所以,又由于,得.(Ⅱ)设,在中,由正弦定理有.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.【点睛】本题考查正弦定理和余弦定理的综合运用,属于中档题21、(1)分布列见解析,(1)【解析】
(1)根据频率分布直方图及抽取总人数,结合各组频率值即可求得各组抽取的人数;的可能取值为0,1,1,由离散型随机变量概率求法即可求得各概率值,即可得分布列;由数学期望公式即可求得其数学期望.(1)先求得年龄在内的频率,视为概率.结合二项分布的性质,表示出,令,化简后可证明其单调性及取得最大值时的值.【详解】(1)按分层抽样的方法拉取的8人中,年龄在的人数为人,年龄在内的人数为人.年龄在内的人数为人.所以的可能取值为0,1,1.所以,,,所以的分市列为011.(1)设在抽取的10名市民中,年龄在内的人数为,服从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 多元评估与反馈机制计划
- 婴幼儿疾病识别试题及答案
- 快速掌握电子商务考试试题及答案
- 挑战自我的人力资源管理师试题及答案
- 2024监理工程师实务案例分析试题及答案
- 政策变化2024年计算机二级考试试题及答案
- 黑龙江林业职业技术学院《现代艺术体操(1)》2023-2024学年第二学期期末试卷
- 2024年全球农业发展趋势分析试题及答案
- 黑龙江省哈尔滨六十九重点名校2025年中考化学试题试卷含解析
- 黑龙江省哈尔滨第六中学2025年高三下学期4月二模试题历史试题含解析
- DBJ04∕T 289-2020 建筑工程施工安全资料管理标准
- 幼儿园大班社会《认识交通工具》课件
- 初三年级组长“走进初三誓师大会”发言稿
- 无人机应用技术概论-第-1-章-绪论
- 《电工电子技术基础》高职全套教学课件
- 2024北京电子科技职业学院招聘笔试备考题库及答案解析
- 第十五课 中望3D-工程图系列2讲解
- 2024-2029年中国3D裸眼技术行业市场发展分析及发展趋势与投资前景研究报告
- DZ∕T 0220-2006 泥石流灾害防治工程勘查规范(正式版)
- 干部人事档案转递单(带存根回执)
- 术中用药用血安全管理课件
评论
0/150
提交评论