银行业金融大数据服务平台项目规划书_第1页
银行业金融大数据服务平台项目规划书_第2页
银行业金融大数据服务平台项目规划书_第3页
银行业金融大数据服务平台项目规划书_第4页
银行业金融大数据服务平台项目规划书_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

银行业金融大数据服务平台项目

规划书

项目介绍1.1项目背景银行业一直是一个数据驱动的行业,数据也一直是银行信息化的主题词。银行的信息化进程先后经历过业务电子化、数据集中化、管理模型化等阶段,如今随着大数据技术的飞速发展,银行信息化也进入了新的阶段:大数据时代。目前,国内银行都积累了海量的金融数据,包括各类结构化、半结构化、非结构化数据,数据量巨大,存储方式多样。但是这些海量数据还没得到充分利用,显得价值含量较低。只有经过合适的预处理、模型设计、分析挖掘后,才能发现隐藏在其中的潜在规律。而应用大数据分析技术,可以从海量的、不完全一致的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识。银行可以利用这些信息和知识来提升金融业务的服务效率和管理水平,银行的关键业务也能从中获得巨大收益。银行在大数据技术应用方面具有天然优势:一方面,银行在业务开展过程中积累了大量有价值数据,这些数据在运用大数据技术挖掘和分析之后,将产生巨大的商业价值;另一方面,银行在资金、设备、人才、技术上都具有极大的便利条件,有能力采用大数据的最新技术。建立“金融大数据服务平台”,?可以通过对金融数据的挖掘、分析,创造数据增值价值,提供针对银行的精准营销、统一广告发布、业务体验优化、客户综合管理、风险控制等多种金融服务。1.2业务需求目前,银行客户对数据的利用仍是以各类统计报表为主,存在以下重大弊端:对数据的分析仅按照固定项目,对业务情况进行事后统计分析和监控。实际上没有找到隐藏在数据背后的原因,数据深度分析和数据挖掘能力不足。对数据的分析仅作为专项的统计分析结果输出,对于数据间的因果影响、相关性分组或关联规则、聚类、描述和可视化等工作尚未开展,数据关联分析能力不足。

统计分析侧重在事后的数据汇总,难以从数据汇总中得到客户服务事件发生的规律,以及前瞻性判断,数据的预测性分析能力不足。针对具体的金融业务,大数据分析在以下方面有着迫切的需求:统一广告发布:目前金融行业客户在广告方面投入大、渠道多,但在确认真实效果、提供优化广告策略时却不能提供确切的数据证据。亟需利用大数据技术在收集各类型、各渠道广告发布数据的基础上,提供可靠的效果数据和优化策略建议。精准营销:目前金融行业的营销方式基本上还是粗放式的,调查方式粗糙,分析原因简单,对过程的控制力差,对客户和产品的推广都缺少针对性。亟需利用大数据技术来收集详尽数据、科学分析原因、严格控制过程、并有针对性地面向客户和产品进行营销推广。业务系统优化:目前金融行业对其业务系统的客户体验效果、客户转化率缺乏准确数据支持,也无法分析具体原因。亟需利用大数据技术获得各业务、各环节的客户转化率,从而有针对性地改进业务流程,提升服务质量。客户流失分析:对于如何稳定留存客户、降低客户流失率,目前金融客户还无法准确分析客户流失的原因,也就无从提出有效的改进措施。亟需利用大数据技术在分析流失客户数据的基础上,提出改进客户关系管理效率和水平的有效建议。风险分析:金融行业对自己客户和业务的风险分析停留在初级阶段,缺乏全面掌握和提前预防的技术手段。亟需利用大数据技术获得存在较高风险的客户群体及业务,作为对其进行重点监控和提前做好预防措施的基础。通过建设金融大数据服务平台,研发基于大数据分析的统一广告发布系统、精准营销系统、业务体验优化系统、客户流失分析系统和风险分析系统,金融客户可以提升广告发布效果,提高营销针对性,优化服务质量,改善客户管理水平,预防风险冲击,进而为业务发展提供决策支撑,并促进相关领域构建新的业务模式、服务模式。项目范围北京XXXX技术有限公司自主研发的“金融大数据服务平台”,旨在为金融行业客户提供包括数据采集、数据存储、数据预处理、数据挖掘、可视化展现、业务实现等全流程服务,

以帮助客户实现各种金融业务。•数据采集“金融大数据服务平台”首先需要收集各种金融数据,它们可能是结构化的,也可能是半结构化或非结构化的;既可能来自银行内部的各业务系统,也可能由外部提供;既可以是静态的(如属性数据),也可以是动态的(如行为数据。而金融数据采集产品就是根据业务需要,将这些数据采集到“金融大数据服务平台,,中。•数据存储Hadoop集群通过将数据分配到多个集群节点上并进行并行处理,因此尤为适合对大数据的存储和分析。Hadoop集群通过添加节点数量来有效的扩展集群,因此具有极好的可扩展性;Hadoop软件都是开源的,也不必购买昂贵的高档服务器,因此具有很好的性价比。Hadoop集群将数据分片发送至多个节点保存,因此具有极高的容错性。•数据预处理采集到金融数据来自多种数据源,大多存在着不完整性和不一致性,无法直接用于数据挖掘或严重影响数据挖掘的效率。因此在进行数据挖掘之前,通过使用数据预处理工具,灵活对原始数据的清理、变换、集成等处理,可以减少挖掘所需数据量,缩短所需时间,并极大提高数据挖掘的质量。•数据挖掘数据挖掘是通过分析数据、从大量数据中寻找其潜在规律的技术。利用预测、关联、分类、聚类、时序分析等技术,数据挖掘可以从海量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识。目前,传统的数据挖掘产品在大数据平台上还存在一些局限性,研发一套Hadoop平台下的数据挖掘工具是一项极具挑战性的任务。•可视化展现数据挖掘得到的结果,往往数据量巨大、关联关系复杂、维度多以及双向互动需求等。可视化展现工具以适合人类思维的图形化的方式对结果进行展示,提高了数据的直观性和可

视性。可视化展现面向各类客户,通过选择合适的可视化模型,将枯燥的数据转换为令人印象深刻的美丽图形,极大提升了数据的利用价值。业务实现“金融大数据服务平台”的效果,最终需要集成在各类金融业务系统中才能得以体现。目前拟建设的金融业务系统有:精准营销系统、统一广告发布系统、业务体验优化系统、客户流失分析系统、风险分析系统等。项目目标实施针对银行的“金融大数据服务平台”项目,通过采集银行内部与外部、静态与动态的各类金融数据,搭建适于大数据存储与分析的Hadoop集群,对金融数据采取合适的预处理方式,利用数据挖掘技术得出隐藏在海量数据后的、有价值的潜在规律,以丰富的可视化模型向客户进行展现,在此基础上实现精准营销、统一广告发布、业务体验优化、客户综合管理、风险控制等金融业务应用。由此,提升金融业务的水平和效率,推进银行业务创新,降低银行管理和运行成本。本项目的具体技术目标包括:开发金融数据采集工具:大数据分析需要收集来自银行内部的和外部的、静态的和动态的各种金融数据,为此开发各类金融数据采集工具,如动态采集SDK、日志提取分析工具、外部数据导入工具等。搭建Hadoop大数据集群:搭建Hadoop大数据集群,是建设“金融大数据服务平台”的基础。利用多台性能较为一般的服务器,组成一套基于HDFS和Map-Reduce机制的集群,并根据需要在其上安装Hive、HBase、Sqoop、ZooKeeper等软件。实现分析挖掘算法:支持Hadoop的分析挖掘算法,是“金融大数据服务平台”的一个关键组成部分。在利用传统数据挖掘技术的基础上,实现包括抽象的数学算法(如关联算法、分类算法、聚类算法、时序分析算法等),以及在此基础上针对金融业务的专业算法(如客户行为特征模型、效果分析模型等),作为进一步构建抽象模型和金融专业模型的基础。构建分析挖掘模型:支持Hadoop的分析挖掘模型,是“金融大数据服务平台”的另一

关键组成部分。在上一步基础上,快速构建抽象的数学模型(如神经网络模型、事物关联模型等),以及针对金融业务的专业模型(如精准营销模型、广告效果评估模型等)。实现ETL工具:数据预处理也是“金融大数据服务平台”需要解决的问题之一。利用市场上已有的数据预处理成果,研发一个支持Hadoop的ETL工具,实现包括规范化、数据抽样、数据排序、汇总、指定因变量、属性变换、数据替换、数据降维、数据集拆分、离散化等功能。实现可视化展现工具:“金融大数据服务平台”上的分析结果将主要采用丰富多彩的可视化形式向用户进行可视化展现。利用市场上已有的相关技术和产品,研发一个可视化展现工具,可以支持:分类树图、视觉聚类图、关联图、序列图、回归图等多种可视化形式。实现金融业务应用:将分析挖掘的结果集成到具体的银行业务系统中,如精准营销系统、统一广告发布平台、业务体验优化系统、客户综合管理系统、风险控制系统等。具体方式既可以是实现某个独立的新业务系统,也可以是在现有系统中实现一个或多个新模块,从而扩充或提升原有的功能。本项目的具体业务目标包括:精准营销:综合分析客户行为特征信息和金融业务分类信息,可以得到客户最有可能感兴趣的业务以及业务最有可能的潜在客户群,以此为基础有针对性地开展营销;统一广告发布:分析广告效果分析信息,可以得到各类型、各渠道的最佳配置或薄弱环节,以此为基础改变广告策略、提升广告效果;业务体验优化:分析客户业务体验信息、客户流失信息,可以得到客户在各业务、各环节的转化率,分析流失原因,在此基础上改进业务流程、提高服务质量,以提升客户满意度;客户流失分析:综合分析客户行为特征信息、客户流失信息及其它信息,得到客户的全方面分析结果,在此基础上改进客户关系管理的效率和水平;风险分析:分析客户属性数据、风险分析数据,可以得到存在较高风险可能的客户群体和业务信息,在此基础上区分特别关注目标、制定预防措施,降低这些客户和业务可能带来的冲击。

技术方案4.1总体架构“金融大数据服务平台”由数据采集层、数据存储层、分析挖掘层和业务应用层组成,总体框架如下图所示:

数据采集层:负责从各类数据源中提取、导入数据,主要产品包括:动态采舞DK、日志提取分析工具、外部数据导入工具、其它数据提取工具等。数据存储层:负责将预处理后的数据进行存储,主要由可进行横向扩展的Hadoop集群构成,另外辅之以关系数据库作数据中转、元数据存储、供某些软件使用等用途。分析挖掘层:负责金融数据经建模、挖掘、评估和发布,核心是实现两类数据挖掘的算

法和模型:一类是抽象的数学算法及模型,另一类是在此基础上针对金融业务的专业算法和模型。业务应用层:负责将分析挖掘结果的可视化展现形式,集成到相应的金融业务系统中。另外,在数据采集层和数据存储层之间,由ETL工具负责数据预处理任务;在分析挖掘层和业务应用层之间,由可视化展现工具负责分析挖掘结果的可视化展现任务。4.2技术架构“金融大数据服务平台”的技术架构采用多层次形式,如下图所示:业务实现层数据源其它数据静态数据日志文件R分析包,SAS,…分析挖掘算法R分析包业务实现层数据源其它数据静态数据日志文件R分析包,SAS,…分析挖掘算法R分析包,SAS,…分析挖掘模型分析挖掘层动态数据数据源包括各类动态数据(如行为数据)、静态数据(如属性数据)、日志文件以及其它数据等,可以是结构化的、半结构化的和非结构化的数据。

在数据采集层,各采集工具根据具体情况采用不同的技术实现方式,如对动态数据的采集,使用C/S架构的客户端采集SDK,对日志文件使用Map-Reduce方式的分析提取工具,对静态数据按Sqoop方式从关系数据导入,对其它数据则使用定制化程序,等等。ETL(数据抽取、转换、加载)将采集到的各种数据整合成统一的数据模型,包括数据清洗、数据转换、数据规约、数据集成等。为加快项目进度和保证项目质量,初步决定在某个支持Hadoop的开源ETL产品(如Kettle)的基础上进行二次开发。在数据存储层,Hadoop集群使用Hadoop技术生态圈的诸多关键技术,包括:分布式存储HDFS系统、并行处理Map-Reduce机制、No-SQL数据库Hbase、数据仓库Hive、协调系统ZooKeeper等。此外,还需用到关系数据库担任数据中转、元数据存储、供某些软件使用等用途。分析挖掘层的任务是在Hadoop集群实现各种分析挖掘算法和分析挖掘模型。算法和模型有两类,一类是抽象的数学算法(如聚类算法、关联分析算法)和数学模型(如神经网络模型、事物关联模型等),另一类是此基础上构建的专业算法(如金融客户分类算法、效果评估算法)和专业模型(如客户行为特征模型、效果评估模型)。为加快项目进度、保证项目质量和扩大适应范围,初步决定在SAS和R的分析挖掘包的基础上实现算法接口,并利用算法接口构建大部分模型,其余部分视实际情况而以自主研发方式构建。可视化展现将分析挖掘结果面向用户进行各种可视化展现(如散点图、直方图、分布图、饼图等),分析挖掘的质量也决定着展现的质量。为加快项目进度,初步决定在某个可视化展现开源产品(如R的图形包)的基础上进行二次开发。在业务实现层,分析挖掘结果集成到相应的金融业务系统中。具体方式既可以是实现某个独立的新业务系统,也可以是在现有系统中实现一个或多个新模块,从而扩充或提升原有的功能。4.3物理架构“金融大数据服务平台”采用集中部署方式,硬件环境由Hadoop集群服务器和数据库集群组成,如下图所示:

其中,Hadoop集群包括两个NameNode(主从方式)和多个DataNode(最少3个,以后根据需要增加);NameNode用于管理数据在DataNode上的分配,而DataNode用于数据的存储。NameNode和DataNode采用相同的配置,运营环境中建议为:CPU为2块*16核,主频2~,内存128G,硬盘12块*2T。数据库集群包括两台数据库服务器,采用双机热备方式。其配置建议为:CPU为2块*16核,主频2~,内存64G,硬盘12块*2T。项目人员组织5.1项目组织结构各组组成及职责为:项目领导组:由公司高管、部门经理担任,负责组织、监督、协调项目的进行;项目经理:由项目领导组任命,基本职责是确保项目目标准时、优质地完成;

大平台组:负责金融大数据服务平台的相关事务,包括搭建Hadoop大数据集群、实现数据挖掘算法、构建业务模型等;业务组:承担与金融业务相关的事务,包括市场调研、对金融业务系统、功能性产品的需求分析等;系统开发组:承担对各产品及业务系统的开发任务,包括SDK产品、ETL工具、可视化展现工具、各个金融业务系统的开发等。5.2项目人员配置组别级别人数备注项目领导组高级管理人员1或多人由公司高管、部门经理兼任项目经理中级管理人员1大平台组系统设计员多人技术专豕实施人员多人业务组需求分析员每产品或系统1人一般由组长兼任系统设计员每产品或系统1人业务实现组系统设计员每产品或系统1人一般由组长兼任编码人员多人测试人员多人实施人员多人项目进度计划“金融大数据服务平台”的整体进度分项目规划、需求调研、项目实施、推广及服务共

四个阶段。项目规划阶段自2014年11月3日至2014年11月28日,共20个工作日。需求调研阶段自2014年11月24日至2015年3月20日,共85个工作日项目实施阶段自2014年11月10日至2015年5月29日,共145个工作日(含元旦、春节、劳动节等法定节假日),按SDK产品、数据采集、集群搭建、算法层研发、构建模型、ETL工具、可视化展现工具、统一广告发布系统、精准营销系统、业务体验优化系统、客户流失分析系统和风险分析系统共十二个小项分别进行。推广及服务阶段,每一项功能性产品或金融业务系统完成后,即可开始进行推广,并一直持续进行。时间进度如下图,详细请参见“金融大数据服务平台进度.xls”和“金融大数据服务平台.mpp”。惊迎号任务名称Ic3q5673B3910II1213101516317318193203213232Q25262?28目29330313233333Q353363?38339%■.1Q1334243QQQ5•561748仙35035152535Q55565?335B59606162636Q36566玳66B9707273?Q7576777879806182838185868768B990眼目极制锢g桂术实岫t里程鲫妁王体巩划吁末间#客户琲?泡据模收绞—F发布舞祉务3沐祐:荏曾柄欢貌ii若衮求割定止务体跚化案兼it务制定切案关分析系猊11月制定麟分析案貌止若Z天$0碎品10$.粉适匿SDKS晶失!*步定版SD砂R手册定科$0卒品透芟方系制定SD院玫曲包切究指告(1)大鼻据平W弟体徉M。)劫恣非生知据T?儒0)舂户静恣曲包存的GO弟三方涂据引其缶)莱集服务又怜制定菸口痛注方案悟注集什S(试好tfl(—住黛什运行、维护圳发St检、分折纳H法信研完SAS加滔J:设计耳法层授□突四V法Kteo的日法启修绘完28构并金城教据业务模昱业务便2!洋幻设计戏与便33脩程悖标架构注客户行为物征传垫沟炊广告为宗分析活郭沟炊业务件始优化检郭构注客户浪关分析15垫将注何度分析便3!WXrn-Tft方系的史开8工口制定焉求京悟ndn5?w加工作日S工作日3工作日2工作日8工作日85IftBL5工作日17工作日10工佃3工作日2工作日10工佃3工作日14S工作日?30工作日7I工作中12工作曰12工作日S工作日3工作日22工作日7S工作日14工作日I工作日?I工作日?3工作日115工作日U工作日14工作日H工作日5工作日20工作日®工作日ZOI4年11月3曰2014年II月3曰201^11月3曰sou^ii月匆X茸II月捋曰2014年11月24日前K年11月2QB2014^11月2Q8匆iq茸12月15曰2015年1月5曰201瓣3月汨2015年3月9曰2015年3月9曰2。,*11月1。日2014年II月10日河4年[1月10曰前K年11月sou^ii月201再12月8曰201^12月8曰201。年12月15日2014^12月158匆X茸12月22曰2015年1月9曰201浦月982015年I月9曰2014年11月17曰sou^ii月20MSH月1亍8201再12月5曰的K年12月22巳201瓣3月汨2015年3月30曰Z014年11月28日20"年”月T日201《年"月M日201牛】月2】日通1你”月28日2015年3月20日201《年12月12日201《车】2月比曰201《年龙月拐日201S年】月】汨201S年3月)3日201g月20日201S年3月20日2O1S牛S月29日2014年12月19日201《年”月】。日20M年12月2日201牛】月石日201《年龙月龙日201《年12月W日2O1S年1月13日201《车】2月扫日201强1月3日201S年】月9日2SS年】月9日22015^1^1302015年4月24日20】你】2月】日20“年龙月但2014年龙月J3日201《年12月跚臼201S年3月ZT日201并明24日232311U2015任•10«】1010S1010IffB工作日工作日工作曰:'1:1工作日工作日工作日工作日工作日工作日完an优化、研发可快化KWTR可砚化平台王体贝划方;制定W未灭俗司税化工b*jra体应用完兰、忧化技一广告发布系技我3!开发完全版开发8T*E系狼洋幻设计J53J开发完全版开发业努体WC化松洋幻设计县33开发完全版开发存户澈分份系统洋如设计完全版开发淄分忻系茨洋如设计月垫开发完全拒开发推广及IE务SW工旦弛广幼据呆集所若推广BTLfgr司袂化佟俱推广级一广吉发布案痢8广业务次弦优化推广容户'除关分祈卷广同腰丹忻推广15IS15105155ID箔202075552S2020日日口日日日日日日日日日日日日

m^sms探环非没2014年11月24日SDia^ll月2Q8匆14年12月22曰2015年1月12曰2015年3月2日2015^1月12日2015甲月12曰2015年1月12日2015^1月2682015年2月2曰2015年2月2日2015年2月如旦2015炫2月1682015年2月16曰2014年12月I日2014年12月旧am年12月22日网IQ炫12月29日2015SI月1282015年3月2曰2015年3月30曰2015^1月12日2015甲月12曰2015年1月19目2015^1月2682015年3月2曰2015年3月30曰乾2015年4月24日201《年】2月】9日201祥1月9日箔201伞月形曰ce20】5泓月以已齿2D】宁年3月6日201强1月Z3日2015年1月23巳201S年】月3J日9,4031201伞月13日4220】5年2月)3日122CHS年3月汨44201并3月6日442OIS年4月24日20“年龙月19日S201《年12月%巳492CHS年】月9日EO201皿月事日5120牌3月海女2015^4月24日532OIS年4月24日201淬1月佑日Z42015^3月23巳201S年2月27日5?20牌3月海20】加月&日201S年3月6目焰65工作曰2014年12月29日aia^iz月2982U5年3月日日2SS年】月9日2工问9《工作日2015甲月12曰201伞月门日&21工作曰2015年2月2?曰20】S年3月幻曰63皿工作日2015^1月19日2O1S年4月10日10工作日2015甲月19曰20件月.英日10套工作日2015年2月2目20玲年3月6巳ee套工作日2015年3月9日20】S年4月将巳6?<5工作日20IS年3月16日2015^5月的日10工作日2015年3月16曰201注3月夕日itL5工作日2015年3月30日2015^4月n日也射20工作E]2OI5feq月20日201S钮月】5日7150工作日?0153¥3月23曰2015年5月S日10工作日2015年3月2汩201S年4月3巳1215工作日2015迁1月13日2SS知月】日M.ee20工作日2015站月汨201S钮月跆日?550工作日?0153¥3月23曰2015年5月S日10工作日2015年3月2汩201S年4月3巳1315工作日2OI5feq月1382SS年5月】日78.Ee®工佃2015年5月妇2015^5月23日戏116工作目?2014年12月22日2015年8月1日1工作日。2014^12月22曰2014^)2月22日201工作日。2015^1月14曰20传年1月"日纪1工作日。2015年3月2曰201并3月2日1工作日?2015年3月2目20玲年3月2已1工作日,2015炫3月30曰20抵年3月:n日&41工作日。2015年4月13曰201祥明13日ee1工作日?2015年5月M日2015^5月肉巳?21工作日,201瓣6月旧2SS年6月】日?61工作日。2015年明13201婚月1日如注:市场推广和服务的结束时间实为“持续”。财务及设备计划八・风险管理软件项目开发具有连续性、复杂性、少参照性、无规范标准等特点,风险程度较高。对于“金融大数据服务平台”,不但涵盖范围广,包含产品多,而且技术要求高,业务需求复杂,因此尤其需要重视各种风险。以下是“金融大数据服务平台”可能遇到的风险及其防预措施:•合同风险:与客户签订的合同不科学、不严谨,与客户在项目边界和各方面责任界定不清等是影响项目成败的重大因素之一。预防措施是项目建设之初,要全面准确地了解合同各条款的内容、尽早就模糊或不明确的条款签订补充协议。•需求变更风险:这是软件项目经常发生的事情。一个看来很有利可图的项目,往往由于无限度的需求变更而让开发方苦不堪言,甚至最终亏损。预防措施是项目建设之初,就和客户书面约定好需求变更控制流程、记录并归档客户的需求变更申请。•沟通不良风险:项目组与项目各干系方沟通不良,是影响项目顺利进展的一个非常重要的因素。预防措施是项目建设之初就和项目各干系方约定好沟通的渠道和方式、项目建设过程中多和项目各干系方交流和沟通、注意培养和锻炼自身的沟通技巧。•缺乏支持风险:上级领导的支持是项目获得资源(包括人力资源、财力资源和物料资源等)的有效保障,也是项目遇到困难时项目组最强有力的“后台支撑”。预防措施是主动争取上级对项目的重视、确保和上级领导的沟通渠道畅通、经常向上级领导汇报工作进展。•进度风

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论