线性二次型最优控制的MATLAB实现_第1页
线性二次型最优控制的MATLAB实现_第2页
线性二次型最优控制的MATLAB实现_第3页
线性二次型最优控制的MATLAB实现_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文格式为Word版,下载可任意编辑——线性二次型最优控制的MATLAB实现线性二次型最优控制的MATLAB实现

一理论依据

应用经典控制理论设计控制系统,能够解决好多简单、确定系统的实际设计问题。但对于多输入多输出系统与阶次较高的系统,往往得不到满意的结果,这时就需要有在状态空间模型下建立的最优控制策略。

最优控制是现代控制理论的核心。最优控制理论的实现,离不开一系列的最优化方法,主要包括两个方面就是如何将最优化问题表示为数学模型,如何根据数学模型尽快求出其最优解。线性二次型最优控制设计是基于状态空间技术来设计一个优化的动态控制器,其目标函数是状态和控制输入的二次型函数。二次型问题就是在线性系统约束条件下选择控制输入使二次型目标函数达到最小。由于线性二次型最优控制问题的性能指标具有显明的物理意义,其最优解具有统一的解析表达式,且可导致一个简单的线性状态反馈控制律,易于构成闭环最优反馈控制,便于工程实现,因而在实际工程问题中得到了广泛的应用。

二MATLAB程序>>clear

>>symsx1x2x3;>>x=[x1;x2;x3];

>>A=[010;001;0-2-3];>>B=[0;0;1];>>R=1;

>>Q=[100000;010;001];>>N=0;

>>[K,P,E]=lqr(A,B,Q,R)>>u=-inv(R)*B'*P*x

K=

31.622819.06613.9377P=

666.1690219.390631.6228219.3906108.528419.066131.622819.06613.9377u=

-(5366634056803559*x2)/281474976710656

(4433500461210591*x3)/1125899906842624-10*10^(1/2)*x1三Simulink仿真图及其响应曲线

利用simulink仿真,画出系统反馈前后的仿真图、输出图像和性能指标图。分析分析反馈前后关系曲线。

-

图1反馈前系统的仿真图

图2反馈前输出图像

图3反馈前性能指标图

图4反馈后系统的仿真图

图5反馈后输出图像

图6反馈后性能指标图

四结果分析

若泛函为J?J?x?t??,根据前面章节所学的变分,可得J?x?在x?x*处有极值的充要条件是?J?0。具体的极值问题还需分为有无约束条件问题,在求解过程中,?U任意,假使不满足该状况是需结合微小值原理计算求解。微小值原理是对经典变分法的扩展,在求解控制有约束时,哈密尔顿H对U不可微时,要用微小值原理。但是在求解非线性的最优控制两点边值问题时,不易求解,线性二次型的实际应用意义在于把所得到的最优反馈控制与非线性系统的开环最优相结合,这样减少开环控制的误差,达到更为相对确切的目的。

线性二次型所研究的是多输入多输出动态系统的控制问题,其中包括作为特例的单输入单输出,另外它的性能指标是综合性的,既包括了有误差的成分,也包含了有控制能量的成分。根据线性的最优反馈控制律,即控制量正比于状态变量,可写为u?t???G?t?X?t?或u?k???L?k?X?k?。把这种线性二次型问题的最优控制与非线性系统的开环控制结合起来,还可减少开环控制的误差。线性二次型问题的最优控制一般可分为状态调理器问题和伺服跟踪问题两大类。

通过对线性二次型最优控制上机试验,更好的对线性二次型最优控制有了更深入的了解。通过给定的控制系统,利用Matlab软件对其最优控制矩阵进行求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论