




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
测量方法及误差第1页,共81页,2023年,2月20日,星期日成绩评定方法:
1.平时考勤、作业、论文和实验等占总成绩40%2.期终考试占总成绩60%第2页,共81页,2023年,2月20日,星期日参考书目热能工程测试技术及仪表讲义,韩东太主编热工测量仪表,第二版,高魁明主编,冶金工业出版社热工测量及仪表,第二版,吴永生,方可人编,中国电力出版社热工参数测量及仪表,何适生主编,中国电力出版社吕崇德.热工参数测量与处理.第二版.北京:清华大学出版社,2001第3页,共81页,2023年,2月20日,星期日学习要求: 要求掌握测试系统的基本组成;仪器仪表的主要性能参数;误差的分类及处理方法;直接测量及间接测量中随机误差和系统误差的计算方法。第一章测量方法及误差分析第4页,共81页,2023年,2月20日,星期日目前热工测量技术的发展趋势体现在以下方面:测量技术是研究测量原理、测量方法和测量工具的一门科学。不同领域有不同测量项目和测量特点。热工测量是指在热工过程中对各种热工参数,如温度、压力、流量、液位等的测量(热力发电厂中有时也把成分分析、转速、振动等列入其中)。用来测量热工参数的仪表称为热工测量仪表。(1)计算机技术的广泛应用。(2)新型传感器的研制。(3)新技术、新设备的应用。第5页,共81页,2023年,2月20日,星期日测量是确定被测量大小的检测过程。即利用测量工具,通过实验的方法将被测量与同性质的标准量(即测量单位)进行比较,以确定出被测量是标准量多少倍数的过程。所得到的倍数就是被测量的值。
1.1.1测量的定义
1.1
测量的概念和测量方法第6页,共81页,2023年,2月20日,星期日测量的表达式x——被测量;b——标准量(测量单位);L——所得到的被测量的值,即得到的测量结果。两个条件:
用来进行比较的标准量应该是国际上或国家所公认的,且性能稳定;进行比较所用的方法和仪器必须经过验证。第7页,共81页,2023年,2月20日,星期日被测量:需要检测的物理量,亦称被测量参数。 如:压力、温度、流量、液位等。 按被测量在测试中的变化情况,可分为:
静态量、动态量两类。 静态量:测量过程中量值不随时间变化而始终保持不变的被测量。动态量:测量过程中量值随时间变化而不断改变其值的被测量。第8页,共81页,2023年,2月20日,星期日1.1.2
测量方法1.按被测量在测量过程中的状态分静态测量
对静态量进行的测量。由于测量过程中被测量可以认为是固定不变的,因此不需要考虑时间因素对测量的影响。动态测量对动态量进行的测量。被测量在测量期间随时间(或其他影响量)发生变化。在日常测量中,大多接触的是静态测量。对于这种测量,被测量和测量误差可以当作一种随机变量来处理弹道轨迹的测量、环境噪声的测量等。对这类被测量的测量,需要当作一种随机过程的问题来处理。第9页,共81页,2023年,2月20日,星期日2.测量结果产生的方式分直接测量:被测量与所选用的标准量直接进行比较,或用预先标定好的仪表进行测量,从而得到测量值的方法。如玻璃管水位计测水位,直尺测长度。间接测量:直接测量出与被测量有确定函数关系的各个变量,带入函数式计算,从而得到测量值的方法。如电阻温度计测温度,压力传感器测压力等。组合测量:直接测量出多组具有一定函数关系的两只,通过解联立方程来求取被测量的方法。如:求A、B的数值。第10页,共81页,2023年,2月20日,星期日3.根据检测装置动作原理分:直读法:被测量作用于仪表比较装置,使其某种参数按已知关系发生变化,并在仪表刻度尺商直接显示测量值。如玻璃管水银温度计由水银柱高度读出温度值。零值法(平衡法):被测量与已知量比较,二者平衡时,仪表平衡器指零,已知量就是被测量。如电位差计测量电势。微差法:被测量与已知量未达到平衡,读取其差值,由已知量和差值求出被测量。如不平衡电桥测量电阻。第11页,共81页,2023年,2月20日,星期日4.根据仪表是否与被测对象接触
接触测量法仪表的部分与被测对象相互接触,受被测对象的作用才能得到测量结果的测量方法。如压力式温度计测量温度,测温包应置于被测介质中。非接触测量法仪表的任何部分不必与被测对象直接接触,就能得到测量结果的测量方法。如光学高温计利用被测对象产生的热辐射测量温度。第12页,共81页,2023年,2月20日,星期日1.2
热工测量仪表的组成与分类1.2.1
组成第13页,共81页,2023年,2月20日,星期日1.感受部件感受被测量的变化,随之内部发生变化,并向外发出一个相应的信号。亦称为一次仪表或传感器。感受部件的具体要求是:输出信号必须随被测参数变化而变化。输出信号只能随被测参数变化而变化。输出信号与被测参数的变化之间呈单值函数关系,最好呈线性关系,并有较高的灵敏度,即有较小的被测量变化时,输出信号就有较显著的变化。反应快、迟延小。第14页,共81页,2023年,2月20日,星期日2.传输变换部件将感受部件输出的信号,根据显示部件的要求进行适当的处理后传送给显示部件,亦称中间件。有的单纯起传递作用有的将信号放大后传出有的将信号转变成统一信号,如电压或电流,亦称变换器。3.显示部件接受传输变换部件送来的信号并将其转换为测量人员可以辨识的信号,亦称二次仪表。根据显示部件的功能不同,仪表又可分为:指示仪表、记录仪表、积算式仪表(积算器)、信号式仪表和调节仪表。第15页,共81页,2023年,2月20日,星期日
1.2.2
仪表的分类按被测参数不同:可分为温度、压力、流量、物位、成分分析和机械量(位移、转速、振动等)测量仪表。按仪表的用途不同:可分为标准用、实验室用和工程用仪表。按显示特点和功能不同,可分为指示式、记录式、积算式、数字式和屏幕式仪表。按工作原理不同:可分为机械式、电气式、电子式、化学式、气动式和液动式仪表。按安装地点不同:可分为就地安装式和盘用仪表。按使用方式不同:可分为固定式和便携式仪表。根据仪表的用途、原理及结构等不同,热工仪表可分为以下多种类型:第16页,共81页,2023年,2月20日,星期日1.3.1
测量误差及其表示方法1.3
测量误差及其种类测量工作是一种实验工作,由于仪表本身不完善,测量人员操作不当,测量时客观条件的变化以及受人类自身认识水平的局限等种种原因,使得测量结果与被测量的真实值之间出现不符的现象,即存在测量误差。测量误差的定义被测量的真值
测定值(测量结果)
测量误差
第17页,共81页,2023年,2月20日,星期日测量误差的概念——测定值测定值(测量结果)
测定值x是由测量所得到的被测量的值。广义上我们可以把测得值、测量值、检测值、实验值、示值、名义值、标称值、预置值、给出值等均看作是测量结果。测量结果是我们要研究的对象。第18页,共81页,2023年,2月20日,星期日测量误差的概念——真值真值:被测量的真实值。理论真值一般只存在于纯理论之中。如:三角形内角之和恒为180º,一个整圆周角为360º真值。测量误差的概念——约定真值约定真值:是指对于给定用途、具有适当不确定度的、赋予特定量的值。亦称:指定值、约定值、参考值或最佳估计值。例:由国家建立的实物标准(或基准)所指定的千克复原器质量的约定真值为1kg,其复现的不确定度为0.008mg。校验时,把相对高一级仪表(标准表)的测量值作为真值。第19页,共81页,2023年,2月20日,星期日普遍性
---误差是不可避免的,所有的测量数据都存在误差。误差的特点:误差的基本表示方法绝对误差相对误差引用误差第20页,共81页,2023年,2月20日,星期日1.绝对误差被测量的真值
测定值
绝对误差:是一个具有确定的大小、符号及单位的量。单位给出了被测量的量纲,其单位与测得值相同。适用于:同一量级的同种量的测量结果的误差比较,或单次测量结果的误差计算。第21页,共81页,2023年,2月20日,星期日2.相对误差定义:仪表的绝对误差与被测量的真实值之比,用百分数表示,即
相对误差的特点:①相对误差只有大小和符号,无量纲,一般用百分数来表示;②相对误差常用来衡量测量的相对准确程度。被测量的大小不同时:允许的测量绝对误差是不同的。相对误差相同时:被测量的量值越小,允许的测量绝对误差也越小第22页,共81页,2023年,2月20日,星期日例:压力P1=50kPa,误差d1=2kPa;压力P2=2MPa,误差d2=50
kPaG1的相对误差为G2的相对误差为G2的测量效果较好。解:第23页,共81页,2023年,2月20日,星期日3.折合误差(引用误差)我国电工仪表、压力表的准确度等级(accuracyclass)是按照引用误差进行分级的。当一个仪表的等级s选定后,用此表测量某一被测量时,所产生的最大绝对误差为:
绝对误差的最大值与该仪表的标称范围(或量程)上限成正比。定义:是指仪表量程范围内指示值的最大绝对误差与该仪表的量程范围之间的百分比,即—仪表量程范围内指示值的最大绝对误差;
—仪表的量程。
第24页,共81页,2023年,2月20日,星期日引用误差示例用有一块测量范围为-0.1MPa~+0.1MPa,2.5级的压力真空表,在进行计量校准时,各示值点上最大允许误差是多少?解:该压力真空表在-0.1MPa~+0.1MPa范围内各示值点上的引用误差不应超过2.5%,则各示值点上允许误差的最大示值误差应为:引用误差专用于仪器仪表误差的描述。δ≤2.5%×[0.1-(-0.1)]=0.005(MPa)第25页,共81页,2023年,2月20日,星期日1.系统误差定义:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。
特征:在相同条件下,多次测量同一量值时,该误差的绝对值和符号保持不变,或者在条件改变时,按某一确定规律变化的误差。1.3.2测量误差的分类根据误差的性质不同,可以把误差分为系统误差、随机误差和疏失误差三种。第26页,共81页,2023年,2月20日,星期日系统误差举例在实际估计测量器具示值的系统误差时,常常用适当次数的重复测量的算术平均值减去约定真值来表示,又称其为测量器具的偏移或偏畸。由于系统误差具有一定的规律性,因此可以根据其产生原因,采取一定的技术措施,设法消除或减小;也可以在相同条件下对已知约定真值的标准器具进行多次重复测量的办法,或者通过多次变化条件下的重复测量的办法,设法找出其系统误差的规律后,对测量结果进行修正。对系统误差,采用修正法进行处理。用天平计量物体质量时,砝码的质量偏差用千分表读数时,表盘安装偏心引起的示值误差刻线尺的温度变化引起的示值误差第27页,共81页,2023年,2月20日,星期日2.随机误差定义消除系统误差之后,测得值与在重复性条件下对同一被测量进行无限多次测量结果的平均值之差。又称为偶然误差。特点在相同测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差。产生原因随机误差是由人们不能掌握,不能控制,不能调节,更不能消除的微小因素造成。这些因素中,有的是尚未掌握其影响测量准确的规律;有的是在测量过程中对其难以完全控制的微小变化(如温度波动、噪声干扰、电磁场微变、电源电压的随机起伏、地面振动等),而这些微小变化又给测量带来误差。第28页,共81页,2023年,2月20日,星期日随机误差的特征随机误差的最主要特征是具有随机性,没有确定的规律。类似于其它随机变量,对无限次测量来说,随机误差服从统计规律。对随机误差,采用数理统计方法进行处理。第29页,共81页,2023年,2月20日,星期日3.疏失误差定义:
指明显超出统计规律预期值的误差。又称为疏忽误差、过失误差或简称粗差。产生原因:某些偶尔突发性的异常因素或疏忽所致。测量方法不当或错误,测量操作疏忽和失误(如未按规程操作、读错读数或单位、记录或计算错误等)测量条件的突然变化(如电源电压突然增高或降低、雷电干扰、机械冲击和振动等)。由于该误差很大,明显歪曲了测量结果。故应按照一定的准则进行判别,将含有粗大误差的测量数据(称为坏值或异常值)予以剔除。对疏失误差,采用误差处理理论进行剔除。第30页,共81页,2023年,2月20日,星期日1.4
仪表的质量指标及仪表的校验
1.4.1仪表的质量指标
1.仪表的精确度等级及允许误差精确度是精密度与正确度的综合指标,或称精度。精密度:对同一被测量进行多次测量所得的测定值重复一致的程度,或者说测定值分布的密集程度,称为测量的精密度。精密度反映了随机误差的影响,随机误差愈小.精密度愈高。正确度:对同一被测量进行多次测量,测定值偏离被测量真值的程度,称为测量的正确度(或称准确度)。正确度反映了系统误差的影响,系统误差愈小,正确度愈高。第31页,共81页,2023年,2月20日,星期日准确度、正确度和精密度三者之间的关系弹着点全部在靶上,但分散。相当于系统误差小而机误差大,即精密度低,正确度高。弹着点集中,但偏向一方,命中率不高。相当于系统误差大随机误差小,即精密度高,正确度低。弹着点集中靶心。相当于系统误差与随机误差均小,即精密度、正确度都高,从而准确度亦高。第32页,共81页,2023年,2月20日,星期日测量仪表的准确度由国家按离散化系列加以规定,并且直接与允许误差相对应。允许误差去掉百分号后取绝对值,就是该仪表的精确度等级,又称精度等级。我国目前规定的准确度等级有:0.005,0.01,0.02,0.04,0.05,0.1,0.2,0.4,0.5,1.0,1.5,2.5,4.0,5.0等级别。
如仪表标牌为:或表示该仪表的精确度等级为0.5级,其允许误差为±0.5%。
仪表的允许误差=±准确度等级%第33页,共81页,2023年,2月20日,星期日例1-1:对某机组进行热效率试验,需用0-16MPa压力表来测量10MPa左右的主蒸汽压力,要求相对测量误差不超过±0.5%,试选择仪表的精确度等级。解:仪表的允许绝对误差=10×±0.5%=±0.05MPa仪表的允许折合误差==±0.313%所以该仪表的精确度等级应选为0.2级。第34页,共81页,2023年,2月20日,星期日2.仪表的基本误差和附加误差仪表在全量程范围上各示值点的误差中,绝对值最大者。基本误差如,某仪表在全量程上各示值点的误差分别为0.1、0.15、-0.2、-0.1,则该仪表的基本误差为-0.2。仪表的基本误差可表示为标准表的示值测量值第35页,共81页,2023年,2月20日,星期日按折合误差的表示形式,仪表的基本误差可表示为—仪表的量程。若仪表未在规定的正常工作条件下工作,或由外界条件变动(如环境温度的变化、电源电压波动、外部干扰等)引起的额外误差,称为附加误差。实际使用中采用校正数来处理附加误差。
校正数=标准值-读数附加误差仪表的基本误差应小于或等于允许误差,否则为不合格。第36页,共81页,2023年,2月20日,星期日例1-2:有二支工业温度计,其刻度范围和精度分别为:
A表0-800℃1.0级;
B表-50-400℃1.5级;试问:哪个温度计精度等级高、允许误差小;
要求测温误差不超过±7℃,应选用哪个温度计?解:A表1.0级<B表l.5级,A表精度等级高;A表允许误差±1.0%,且测量范围大;B表允许误差±1.5%,且测量范围小;从仪表性能指标来看,A表优于B表。允许误差绝对值:从仪表允许误差来看,选用B表较为合理。
正确选择仪表的量程范围、精度等级应视具体要求而定,不能一概而论。第37页,共81页,2023年,2月20日,星期日例1-3
某待测水头约为90米,现有0.5级,和1.0级的两块压力表,问用哪一块压力表测量较好?解:用0.5级的压力表测量90米水头时的最大误差相对误差为:用1.0级的压力表测量90米水头时的最大误差相对误差为:第38页,共81页,2023年,2月20日,星期日例2
说明并不是表的精度越高,测量精度就越高,应选择被测量在2/3满量程处的线性仪表!!第39页,共81页,2023年,2月20日,星期日3.变差在规定的使用条件下,使用同一仪表进行正行程和反行程测量时,在相同示值点上,正反行程测量值之差的绝对值称为此刻度点的变差。定义:在全量程范围内,仪表各刻度点的变差中的最大者称为仪表的变差(也称滞后误差或回差)图1-2变差用折合误差的表示形式:仪表的变差应小于或等于允许误差,否则为不合格。第40页,共81页,2023年,2月20日,星期日4.重复性在同一工作条件下,按同一方向对同一被测量进行多次重复测量时,所得的多个测量值的一致程度称为重复性。5.灵敏度和不灵敏区灵敏度是指仪表感受被测参数变化的灵敏程度。是稳态下,仪表输出信号的变化增量与对应输入信号的变化增量的比值(即变化率),即灵敏度第41页,共81页,2023年,2月20日,星期日不能引起仪表输出变化的输入信号的范围,称为不灵敏区。对于指示仪表,灵敏度就是指单位输入信号所引起指针的偏转角度或位移量。灵敏度与分辨率仪表的分辨率指仪表能响应的输入信号的最小变化也称灵敏度限。它与仪表的灵敏度是不同的。不灵敏区当特性曲线区间取得很小时,仪表(系统)的变差、灵敏度和不灵敏区存在下列关系
仪表变差=灵敏度×不灵敏区 第42页,共81页,2023年,2月20日,星期日6.非线性误差(线性度)仪表输出-输入特性曲线与某一直线之间最大偏差量(或其相对量)称为仪表的非线性误差,也称线性度。克服非线性误差的措施是:在指针或模拟仪表上画成非线性(不均匀)刻度;对数字式仪表系统中应采用线性化器。图1-3非线性误差第43页,共81页,2023年,2月20日,星期日7.漂移在环境及工作条件不变的前提下,保持一定的输入信号,经过一段时间后,输出的变化称为漂移。电子元件的老化节流元件的磨损热电偶和热电阻元件的污染变质弹性元件的失效形成原因:第44页,共81页,2023年,2月20日,星期日例1-3:某指示压力表,量程范围为(0-6)MPa,标尺总弧度为270°,1.5级精确度,在正常工作条件下用标准表校验结果如表l-1所示。试求:(1)仪表的允许误差;(2)仪表的基本误差;(3)仪表的变差;(4)仪表的灵敏度;(5)是否合格。表1-1压力表校验记录标准压力p(MPa)01.02.03.04.05.06.0被校压力
p(MPa)上行程0.000.982.153.204.325.066.10下行程0.051.022.003.054.304.855.90第45页,共81页,2023年,2月20日,星期日解:仪表允许折合误差=±1.5%仪表允许绝对误差=±1.5%×(6.0-0)=±0.09MPa(2)求基本误差(1)由仪表精确度1.5级可得折合(引用)误差形式的基本误差无论折合形式、绝对形式的基本误差均已超过允许误差。第46页,共81页,2023年,2月20日,星期日(3)仪表变差应在7组上下行程读数差中选最大者,即(4)该表灵敏度
(5)该表因超差不合格。第47页,共81页,2023年,2月20日,星期日1.4.2仪表的校验为了确保测量结果的真实性和可靠性,对使用了一定时间之后以及检修过的仪表,都应进行校验,以确定仪表是否合格。外观检查内部机件性能检查绝缘性能检查示值校验等仪表校验的步骤—般包括第48页,共81页,2023年,2月20日,星期日1.示值比较法用标准仪表与被校仪表同时测量同一参数,以确定被校仪表各刻度点的误差。整数刻度点,包括零点及满刻度点不得少于五点(精密仪表不得少于七点),校验点应基本均匀分布于被校仪表的整个量程范围。校验点选取各校验点的误差不超过该仪表准确度等级规定的允许误差则认为合格。允许误差应不大于被校表允许误差的三分之一;量程应等于或略大于被校仪表的量程。标准仪表要求:第49页,共81页,2023年,2月20日,星期日2.标准状态法
例如,利用一些物质(如水、各种纯金属)的状态转变点温度来校验温度计,利用空气中含氧量一定的特性来校验工程用氧量计等。利用某些物质的标准状态来校验仪表。第50页,共81页,2023年,2月20日,星期日1.5
测量的误差分析与处理1.5.1随机误差的处理
有界性
单峰性
对称性
抵偿性随机误差总是有界限的,不可能出现无限大的随机误差。在一定测量条件下的有限次测量结果中,随机误差的绝对值不会超过某一界限。绝对值小的误差出现的次数多于绝对值大的误差出现的次数。在一定测量条件下的有限次测量结果,其绝对值相等的正误差与负误差出现的次数大致相等。在有限次测量中,绝对值相同的正负误差出现次数大致相同。计算这些误差的算术平均值时,其绝对值相同的正负误差会相互抵消;测量次数足够多时,全体误差的代数和为零。第51页,共81页,2023年,2月20日,星期日置信区间,置信概率随机误差的分布规律服从于正态分布规律,如图所示。置信区间:根据随机误差的分布规律,从一系列重复测量值中求出被测量值的最可信值作为测量的最终结果,并给出该结果以一定概率存在的范围。置信概率:被测量的随机误差出现在该置信区间的概率。
N——总的测量次数——误差在到之间所出现的次数随机误差的概率密度为:第52页,共81页,2023年,2月20日,星期日概率密度分布函数为:随机误差出现在-∞到+∞之间的概率密度为1,即概率密度曲线下的总面积为1标准误差(均方根误差)为:第53页,共81页,2023年,2月20日,星期日由误差的抵偿性可知,误差总和趋于0。重复测量次数足够多时,测定值的算术平均值即可代替真值。用测量值的残差来计算标准误差σ估计值S:第54页,共81页,2023年,2月20日,星期日为测量误差落在与
之间的概率随机误差发生的范围称为置信区间;用标准偏差σ的倍数概率称为在的置信概率或置信水平。
称为显著性水平。置信区间和置信概率合起来称为置信度。
置信区间上表示,z称为置信系数。第55页,共81页,2023年,2月20日,星期日z00.20.40.60.80.900.00000.158520.310840.451490.576290.6318810.682690.769860.838490.890400.928140.9425720.954500.972190.983600.990680.994890.9962730.997300.998620.999320.999680.999850.999904将:和代入上式,则:称为误差函数。关系可见下表:第56页,共81页,2023年,2月20日,星期日z00.20.40.60.80.900.00000.158520.310840.451490.576290.6318810.682690.769860.838490.890400.928140.9425720.954500.972190.983600.990680.994890.9962730.997300.998620.999320.999680.999850.999904这表明,绝对值小于的随机误差出现的概率是68.27%。对于
即对于即第57页,共81页,2023年,2月20日,星期日标准差实际上反映了一组测定值的随机误差的大小。概率密度分布曲线越尖锐,测定值的集中程度越好,其测定值的精密度(一致性)越高
设h为精密度指数:则:第58页,共81页,2023年,2月20日,星期日如仅作一次测量,就可估计这一次测定值()的极限误差为,也就是说该测定值与真值之间不超过的偏差的概率为99.73%,即该值为。
对于单次测量,其估计标准差S应取自测量仪表固有标准差值,且S的三倍值(允许绝对误差)由测量仪表精度和量程预先计算来确定。第59页,共81页,2023年,2月20日,星期日【例1-4】某主蒸汽温度测量系统,其精确度为0.5级,测量范围0~600℃,测得读数℃,只计随机误差,试求其测定结果?解:由测量系统的精确度等级可知,
该测量系统的允许绝对误差为:℃设测量服从正态分布,则:℃被测温度真值为:第60页,共81页,2023年,2月20日,星期日若某仪表(或测量系统)对同一被测量进行了N次重复测量,得读数为其数学期望值应取其算术平均值:算术平均值的极限误差为其算术平均值的标准偏差的估计值:第61页,共81页,2023年,2月20日,星期日【例1-5】对稳态工况下的恒定差压进行了12次测量,得到如下一组测量值(单位为Pa):
198519651984199519981975197319831981195619581975求该恒定差压测量结果?第62页,共81页,2023年,2月20日,星期日N值越大,则标准差越小,测量精度也越高。故条件许可情况下尽量取多次测量。第63页,共81页,2023年,2月20日,星期日对于一次测定值,其测量结果为对于有限次数的多次重复测量,其测量结果为
—全部测量值的算术平均值;S——标准误差的估计值;N——重复测量的次数;
t——t分布系数。当重复测量的次数较少时
当测量次数较少,实验数据将不服从正态分布而是服从t分布(又称Student分布),这时测量值的置信区间(随机不确定度)和置信概率可由t分布求得。第64页,共81页,2023年,2月20日,星期日自由度vt值自由度vt值P=90%P=95%P=99%P=90%P=95%P=99%16.31412.70663.657181.7342.1012.87822.9204.3039.925191.7292.0932.86832.3533.1825.841201.7252.0862.84542.1322.7704.604211.7212.0802.83152.0152.5714.032221.7172.0742.81961.9432.4473.707231.7142.0692.80771.8952.3653.499241.7112.0642.79781.8602.3063.355251.7082.0602.78791.8332.2623.250261.7062.0562.779101.8122.2283.169271.7032.0522.771111.7962.2013.106281.7012.0482.763121.7822.1793.055291.6992.0452.756131.7712.1603.012301.6972.0422.750表1-3t分布表1-3t分布表1-3
t分布
第65页,共81页,2023年,2月20日,星期日例1-6
对某已知电阻进行了8次测量,得到的测量结果分别为15.30,14.94,15.19,14.86,15.11,15.15,14.97,15.35,要求测量结果的置信概率为99%,求该电阻的真实阻值及不确定度。解:
测量结果的算术平均值为标准误差的估计值为第66页,共81页,2023年,2月20日,星期日自由度置信概率为从表1-3中可以查出故算术平均值的置信区间(随机不确定度)为(99%)真实阻值应取从表1-3中的数值可以看出当N逐渐增大时,t分布趋近于正态分布。第67页,共81页,2023年,2月20日,星期日1.5.2
疏失误差的处理定义:指明显超出统计规律预期值的误差。又称为疏忽误差、过失误差或简称粗差。产生原因:某些偶尔突发性的异常因素或疏忽所致。测量方法不当或错误,测量操作疏忽和失误(如未按规程操作、读错读数或单位、记录或计算错误等)测量条件的突然变化(如电源电压突然增高或降低、雷电干扰、机械冲击和振动等)。由于该误差很大,明显歪曲了测量结果。故应按照一定的准则进行判别,将含有粗大误差的测量数据(称为坏值或异常值)予以剔除。第68页,共81页,2023年,2月20日,星期日1、拉伊特准则(3σ准则)测量列中的某个测量值的残差νi的绝对值大于该测量列标准误差的3倍,可认为是粗大误差,可以剔除。即:剔除粗大误差后,需要重新计算测量列中的算数平均值和标准误差,继续按照此方法判断。第69页,共81页,2023年,2月20日,星期日拉伊特准则的特点1、简单,实用;2、判断条件界限宽松,容易混入该剔除的粗大误差;3、当n≤10,即使有粗差,也不易判断。第70页,共81页,2023年,2月20日,星期日2、格拉布斯准则NN=0.05=0.01=0.05=0.01=0.05=0.0131.1531.155132.3312.607232.6242.96341.4631.492142.3712.659242.6442.98751.6721.749152.4092.705252.6633.00961.8221.944162.4432.747302.7453.10371.9382.097172.4752.785352.8113.17882.0322.221182.5042.821402.8663.240
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国木质有源音箱市场分析及竞争策略研究报告
- 2025至2030年中国朝天滑轮市场分析及竞争策略研究报告
- 2025至2030年中国有机制品专用锯行业发展研究报告
- 2025至2030年中国智能感应IC卡考勤机市场分析及竞争策略研究报告
- 2025至2030年中国普通轴向加强型波纹管膨胀节市场调查研究报告
- 2025至2030年中国无臭氧石英管市场现状分析及前景预测报告
- 2025至2030年中国无油空压机市场分析及竞争策略研究报告
- 2025至2030年中国旋转灯市场分析及竞争策略研究报告
- 2025至2030年中国方形裙边沐浴盆市场分析及竞争策略研究报告
- 2025至2030年中国斜轴式变量柱塞泵行业投资前景及策略咨询报告
- 沪教版(五四学制)(2024)六年级数学下册 第六章 圆和扇形 单元测试题(含解析)
- 2025年开封大学单招职业技能测试题库完整
- 30-提前介入在建高铁的实践与思考5则范文
- 2023-2024学年华东师大版八年级数学上册期末复习综合练习题
- 职业教育培训需求分析课件
- 2025版矿山安全生产责任承包协议范本3篇
- 并购重组税务处理-企业管理
- 四川凉山州人民政府办公室考调所属事业单位工作人员2人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年中国艾草行业市场现状、发展概况、未来前景分析报告
- 完整初一历史上学期记忆时间轴
- 《农村普惠金融发展研究的国内外文献综述》4500字
评论
0/150
提交评论