版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
NetworksofBiological
SignalingPathways
信号传递网络康海岐高方远马欣荣一、生物体内的信号传递1.Thesenseofsignaltransduction:intercelluarinformationexchange,regulationofmetobolism,onbodylevel2.Typeofsignals:
neuroregulation:neurotransmitter(乙酰胆碱,胺类氨基酸,调节肽类等),neuroregulator
chemicalsignals:cAMP,Ca2+,hormone,3.Mechanisms:3.1pr.←→pr.,3.2Ereaction(±p)3.3Eactivity3.4pr.degradation3.5intracelluarmessager3.6secondermessager
Ecell一、生物体内的信号传递4.Signalingpathways:4.1Ca2+
4.2cAMP4.3tyrosinekinase:EGFR,insulinR4.4otherpr.kinasecascade:PKC,PKA,PKG4.5intracelluarproteasecascadeSignaltransmissionoccur:i.Pr.—pr.Interactionii.Enzymaticreaction:±piii.Pr.Degradationiiii.ProductionofintracellularmessagerPeptideSignalinginPlants
PNAS,Nov.6,2001,vol.98no.23Inplants,onlyafewpeptidehavebeenidentified
thatactassignalingmolecules.
Incontrast,signalingpeptidesaremajorplayers
inallaspectsofthelifecycleinanimalsandyeast.suggeststhatsignalingmechanismsacrossthe
eukaryotickingdomarefundamentallydifferent.目前有关植物中信号肽的研究主要基于以下5种:番茄systeminPSKENOD40CLV3SCR18aa10-13
aa72-75aa53-55aa
2.最近分离到另外3种活性信号肽:RALF:rapidalkalinizationfactor,5kd;Tobaccosystemin:TobsysI,TobsysII1)tomatosystemin:由食草动物损伤后引起的系统损伤反应(asystemicwoundingresponse)
在悬浮培养细胞中可以激活促细胞分裂蛋白激酶[mitogen-activatedprotein(MAP)kinase]
并诱导培养基地碱化(alkalinization)
诱导蛋白酶抑制蛋白编码基因的表达(induceexpressionofproteinase-inhibitorprotein-encodinggenes)3.功能:Fromthefollowingssupporttheideathat
peptideandnonpeptidehormone-activatedsignalingcascadesarelinkedinplantsastheyareinanimals:
植物生长素类似5-羟色胺,乙烯类似一氧化碳,油菜素类固醇是类固醇,茉莉酮酸与前列腺素相关;
Systemin-inducedwoundresponseis
regulatedthroughtheoctadecanoidpathway,
involvingjasmonicacid;4.信号调控网络
PSK-inducedcellproliferationrequiresthehormonesauxinorcytokinin;SomeofthedevelopmentaldistortionsinrootsinducedonadditionofRALFarereminiscentofimpairednonpeptide
hormone-controlledprocesses.因此,揭开两种信号cascades之间关系,将是非常有趣的事。二、海马趾CA1神经元区室化模型
中的15个信号途径A:EGF,SOSB:GEF,RasC:cAMP,AC1,AC2D:GE:AA,PLA2F:PLC,PLC
G:DAG,IP3H:MAPKCascadeI:CaMKIIJ:PKAK:PKCL:Ca,IP3M:CaMN:CaNO:PP1
ReactionA:EGF,SOS
ReactionB:GEF,RasReactionD:GReactionE:AA,PLA2ReactionsF,G:PLC,PLC,DAG,IP3ThevariousphosphorylationstatesofCaMKIIhavedifferentenzymekinetics,andeachofthesewereexplicitlymodeled.Forsimplicitytheautophosphorylationstepsarerepresentedbyasingleenzymearrowinthisfigure,withCaMKII_aasthecombinedactivityofthevariousphosphorylationstates.Theindividualkinetictermsusedinthemodelareindicatedbythemultipleratereferencesonthearrows.ReactionI:CaMKIIReactionJ:PKAReactionK:PKC
ReactionM:CaMReactionN:CaN2.Materialsandmethord(1).HippocampalCA1neuron(inGENSIS),(2).NMDAR[ondendriticspine(树突棘)onthemodel](3).Synapticinput(3tetanicburstsat100HZ,1seach)→LTP→Ca2+waveforms3.ComputationformulationGenesisformulation:
S+E<--k2---k1-->SE---k3--->P+E
Vmax=maxvelocity=k3.
Substrateissaturating,soallofEisinSEform.
SoVmax.[Etot]=[SE].k3==[Etot].k3Km=(k3+k2)/k1
k2=k3*4
Kd=Kb/KfIf[A]*[Bhalf]*Kf=[Chalf=Bhalf]*Kbthen[A]=Kb/Kf=KdKa=Kf/Kb=1/Kd4.verification
(i).
Model
simplekineticschemes
thatcouldbecalculatedanalytically,compare
simulatedresults
with
analyticalresults.
(ii).
Usethelawofmassconservationand
microscopicreversibilityprinciples(微观可逆性原理)
→test
accuracyincomplexreactionschemes.
(iii).
Run
thesamemodel
atdifferenttimesteps,comparetheresultingsimulatedvalues.5.ProteinKinaseCmodelingexampleSimulationparameters:PKCReactionK:PKC
ReferencesFigure
Reac#
kf
kb
K
1
1
50
K
2
2E-10
0.1
K
3
1.2705
3.5026
K
4
0.000000002
0.1
K
5
1
0.1
K
6
2
0.2
K
7
0.000001
0.5
K
8
1.3333E-08
8.6348
K
9
0.000000001
0.1
K
10
0.00000003
2
ReferencesConcsK:PKC
ReferencesFigure
Name
Conc
K
PKC_inactive
1
1.
Review:Y.Nishizuka,Nature334,661(1988)2.
J.D.SchaechterandL.I.Benowitz,J.Neurosci.13,4361(1993)3.
T.Shinomura,Y.Asaoka,M.Oka,K.Yoshida,Y.Nishizuka,Proc.Natl.Acad.Sci.U.S.A.88,5149(1991)U.Kikkawa,Y.Takai,R.Minakuchi,S.Inohara,Y.Nishizuka,J.Biol.Chem.257,13341(1982).A.BlockdiagramofactivationforPKCpathwaybyCa2+,AAandDAG.builtupsimulationsiteratively:First:matchedAAactivationofPKCatzeroCa.Then:matchedactivationofPKCwithCaatzeroAA,Third:matchedthecurvesinBwith1uMCaandvaryingAA.Four:testthematchforC,withvaryingCaand50uMAA.Last:incorporatedDAGinteractionsintothemodel.B:ActivationofPKCbyAA,with(triangles)orwithout(squares)1mMCa2+.Opensymbolsanddashedlinesrepresentsimulations,solidsymbolsandsolidlinesareexperimentaldata.Shows:Ca2+isnecessaryfortheactivationofPKC.experimentalconcentration-effectcurvesfromtwomainsources:J.D.SchaechterandL.I.Benowitz,J.Neurosci.
13,4361(1993);T.Shinomura,Y.Asaoka,M.Oka,K.Yoshida,Y.Nishizuka,Proc.Natl.Acad.Sci.U.S.A.
88,5149(1991)C:ActivationofPKCbyCa2+,with(triangles)orwithout(squares)50mMAA.Thecurveinthepresenceof50mMAA(triangles)waspredictedfromtheparametersobtainedbymatchingthecurvesinBandthecurvewithoutAA(squares)inC,withoutfurtheradjustment.D:ActivationofPKCbyDAG,with(triangles)orwithout(squares)50mMAA.BothcurvesinDwereobtainedinthepresenceof1mMCa2+.DuetodifferentmethodsforestimatingDAGconcentrationsthelevelsofDAGusedinthemodelarescaled15-foldupwithrespecttotheexperimentalconditionsfromShinomuraetal.四、developethenetworkmodelinstagesFirst:modelindividualpathwaysThen:examinexperimentallydefinedcombinationsoftwoorthreesuchindividualpathwaysandtestthesecombinedmodelsagainstpublisheddata.Third:repeatthisprocessusinglargerassembliesofpathwaysuntiltheentirenetworkmodelofinteractingpathwayswasformed.Pathwayswerelinkedbytwokindsofinteractions:(i)SecondmessengerssuchasAAandDAG,producedbyonepathwaywereusedasinputstootherpathways.(ii)Enzymeswhoseactivationwasregulatedbyonepathwaywerecoupledtosubstratesbelongingtootherpathways.1、one
SignalingpathwaysexampleS
(1).EGF’sstimulationofMAPK1,2Fig.2.EGFreceptorsignalingpathways.(A).Blockdiagramofsignalingpathways.Rectanglesrepresentenzymes,andcirclesrepresentmessengermolecules.ThismodelusedmodulesshowninFig.1,reactionA(EGF),B(Ca2+/CaM),E(AA,PLA2),H(PKC),F(PLCγ,DAG,IP3),H(MAPKascade),K(PKC),I(CaMKII),L(Ca,IP3).
Fig.2BthetimecourseofactivationofMAPKbyEGF(B)Predicted(opentriangle)andexperimental(filledtriangles)timecourseofresponseofMAPKtoasteady
EGFstimulusof100nM.theyaxisrepresentsfractionalactivation.
ThefallintheMAPKactivityaftertheinitialstimulationisduetoacombinationofEGFreceptorinternalizationandMAPKphosphorylationandinactivationofSoS.1、one
SignalingpathwaysexampleS
(2).ActivationofPLCγ
byCa2+
inthepresence(triangles)orabsence(squares)ofEGF.
(C)Concentration-effectcurves.Dashedlinesaremodeldata,andsolidlinesareexperimentaldata.Theyaxisrepresentsactivation.Threestimulusconditions:
10minat5nMEGF(shortbar,circles),100minat2nMEGF(longbar,squares),100minat5nMEGF(longbar,triangles).Onlythethirdconditionsucceedsincausingactivationofthefeedbackloop.Why?2、Twoconnectedpathways
(1).ActivationofthefractionalfeedbackloopbyEGFreceptor:(D)ActivationoffeedbackloopbyEGF.B(basal),T(threshold),andA(active).PointArepresentshighactivityforbothPKCandMAPK,whereaspointBrepresentslowactivity.Bothofthesepointsrepresentdistinctsteady-statelevels.Suchasystemwithtwodistinctsteadystatesisabistablesystem.ThebifurcationpointTisimportantbecauseitdefinesthresholdstimulation.2.(1)Activationofthefractionalfeedbackloop
byEGFreceptor:(E)Bistabilityplotforfeedbackloop
Bistabilityispresentoverarangecomparabletotheexperimentaluncertainty,indicatingthatthephenomenonisrobust.(Horizontalstripes:experimentaluncertaintyinconcentration;diagonalstripes,simulatedbistabilityrangeforconcentrations.)MAPKhasaparticularlylargeuncertaintyinconcentrationrangebecauseoflargedifferencesintissuedistributions.2.(1)ActivationofthefractionalfeedbackloopbyEGFreceptor:(F)estimatedexperimetaluncertaintyinEparametersinitiallyactivating:asuprathresholdstimulus,andthenoneofthreeinhibitoryinputswasapplied:10minat8nM(shortbar,circles),20minat4nM(longbar,squares),and20minat8nM
(longbar,triangles.).Onlythethirdconditionisabletoinactivatethefeedbackloop.Thereboundinthefirsttwocasesisduetotwofactors:thepersistenceofAAduetoarelativelyslowtimecourseofremovalandthetimecourseofdephosphorylationofactivatedkinasesintheMAPKcascade.2.(1)ActivationofthefractionalfeedbackloopbyEGFreceptor:(G)InactivationoffeedbackloopbyMKP-1.
2.(1)ActivationofthefractionalfeedbackloopbyEGFreceptor:(H)Thresholdsforinactivationoffeedbackloop.MKPwasappliedforvaryingtimesandamounts.AthighMKPlevels,inactivationoccursmorequickly,butthereisaminimumthresholdofnearly10min.Conversely,whenMKPisappliedforverylongtimes,atleast2nMMKPisrequiredtoinactivatethefeedbackloop.SomeconclusionsforEGFRsignalingpathways(1).100nMEGFcanactivateMAPK.(2).Ca2+activatePLCγ,whichhasmorehighactivityunder0.1uMEGF.(3).100minat5nMEGFactivatedthefeedbackloop.(4).ActivationofMAPKandPKCbyEGFhasathreshold(pointT).(5).ThephenomenonisrobustascomparingwithSimandExptonKmandConc.(6).MPK-1(20min,8nM)caninactivatethefeedbackloop.(7).HighMKPlevel,necessaryfornearly10min.
LongtimeapplicationofMKPrequiresatleast2nMMKP.Aboutbistablesystem(1).Suchabistablesystemhasthepotentialtostoreinformation.Signalingevents
[theinitialstimulation
(amplitudeandduration)]thatpushthelevelsofeitheractivatedPKCoractivatedMAPK
pasttheintersectionpointTwillcausethesystemtoflipfromonestatetoanother.Thisanalysiscanbegeneralizedtoanycombinationofpathwaysinafeedbackloop.(2).Theemergentpropertiesofthisfeedbacksystemdefinenotonlytheamplitudeanddurationoftheextracellularsignalrequiredtoactivatethesystembutalsothemagnitudeanddurationofprocessessuchasphosphataseactionrequiredtodeactivatethesystem.(3).Thesepropertiesmakeafeedbacksystem,onceactivated,capableofdeliveringaconstantoutputinamannerunaffectedbysmallfluctuationscausedbyactivatingordeactivatingevents.Thiscapabilitytodeliverastimulus-triggeredconstantoutputsignalevenafterthestimulusiswithdrawnmayhavenumerousbiologicalconsequences.2.(2)CaMKII
(Ca2+/calmodulin-dependentproteinkinaseII)functionsinLTPofsynapticresponsesinthehippocampus.ThecAMPpathwaygatesCaMKIIsignalingthroughtheregulationofproteinphosphatases.NMDARandCainfluxaremodeledinacompartmentalmodelofaCA1neuronwithaseriesofthreetetanicstimuliat100Hz,lasting1seach,separatedby10min.ThismodelusedmodulesshowninFig.1,C,I,J,M,N,andO(BtoE).Opensquares:fullmodel;Filledtriangles:cAMP(fixedatrestingconcentrations→preventPKAactivity↑).2.(2)(B)ActivationofCaMKII.
TheinitialincreaseinintracellularCa2+
causedanactivationofCaMKII,AC1,andCaNthroughCaMbindingandofPKAthroughincreaseincAMPproducedthroughactivationofAC1-AC8.
cAMP↑→PKAactivation→PP1↓→CaMKII↑ThepresenceofacAMP-operatedgateleadstoalargeincreaseintheamplitudeoftheCaMKIIresponseandprolongationofitsactivity.Nevertheless,itdoesnotleadtoapersistentactivationofCaMKII.
2.(2)(C)ActivationofPKA.AC1-AC8bindingtoCa/CaM↓producingcAMP.↓PKAactivityrisessharplyOtherwise,itsactivity:don’trise2.(2)(D)ActivityofPP1.[Ca/CaM↑+cAMP(fixed)]→CaNactivation↑→smalltransientscAMPfixed→PKAactivation↓cAMPunfixed→PKAactivation↑→PP1activity↓ActivePP1→dephosphorylateCaMKII(Thr286)→CaMKII↓.2.(2)(E)CaN(PP2B)activationby
Ca/CaMelevation.Thefullmodel–cAMPfixedcurvesoverlapalmosterfectly.
↓CaNuninfluencedbycAMP四、3.Amodelforinteractionbetween4signalingpathways:formanetwork(PKC、MAPKpathways+CaMKII、cAMPpathways)Glu(+postsynapticdepolarization)
→Ca2+influxthroughNMDAR→[Ca2+]↑
→postsynapticPK(CaMKII,PKC,PKA,MAPK)↑四、3.Combinedmodelwithfeedbackloop,synapticinput,andCaMKIIactivityandRegulation.cPLA2(heldactivity)→lessAA→FBOFFMKP(timerofFBinearlyLTPofsynapse)→FBOFFcPLA2(activity↑)→AA↑→FBON四、3.ActivitypromajorenzymesinpathwayFigBtoG
▲:fullmodel(FBON)□:feedbackblocked(FBOFF)
(AAfixedatrestingconcentrations)FBON
:presentfeedbackFBOFF:absencefeedback
四、3.(B)ActivityproPKCFBOFF:→PKC↓FBON→largersuccessivespikes(initialspike+FBON)
→DAG+AA→PKC↑↑四、3.(C)
ActivityproMAPKFBON
→MAPKturnonFBOFF
→MAPKturnoff(initialspike+FBON)
→DAG+AA→PKC↑↑→MAPK↑(steady)
四、3.(D)ActivityproPKA.Ca2+inflow→AC1,8↑→PKA↑Ca2+
→identicalPKA↑FBON:PKC→
AC2↑→cAMP↑→PKA↑↑
sustainedPKC→sustainedPKAactivitySeveralemergentpropertiesofnetwork(1).Extendedsignalduration.(2).Activationoffeedbackloop.(3).Definitionofthresholdstimulationforbiologicaleffects.(4).Multiplesignaloutputs.四、3.(E)ActivityproCaMKII.Ca2+inflow→CaMKII↑Ca2+
→identicalCaMKII↑FBON:PKC→AC2↑→cAMP↑→PKAbaseline↑(twofold)PKA↑→PP1↓→CaMKII↑{
[dephosphorylateCaMKII(Thr286)]→CaMKIIautophosphorylation↓}四、3.(F)ActivityproPP1.Ca2+→PP1↓(overlap:FBON,FBOFF)FBON→PKA↑(sustained)→PP1↓→PP1(sustained)CaMKII↑四、(G)ActivityproCaN(PP2B).FBOFForFBON:
CaN
isnaffected
→
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 漯河食品职业学院《机械工程材料与成形技术》2023-2024学年第一学期期末试卷
- 2024年版:版权许可及发行外包合同2篇
- 2025签订房屋租赁合同要审查哪些要点
- 2024年标准个人汽车短期租赁协议范本版
- 单位人事管理制度范例合集
- 旅游挑战之旅服务合同
- 外墙修复工程安全协议
- 娱乐产业合同工管理方案
- 2024年标准化园林材料采购合同版B版
- 2024双方智能电网建设与运营合作承诺书3篇
- GB/T 33336-2016高纯工业品三氯氧磷
- FZ/T 07019-2021针织印染面料单位产品能源消耗限额
- 低利率时代家庭财富管理课件
- 舌尖上的台州课件
- 全国硕士研究生入学统一考试英语(二)模拟卷
- 拆除、报废记录表
- 生命密码-课件
- 动画制作员职业技能鉴定考试题库-下(多选、判断题部分)
- 急救中心急救站点建设标准
- 高中化学《元素周期表和元素周期律的应用》优质课教学设计、教案
- 工序标准工时及产能计算表
评论
0/150
提交评论