信号传递网络课件_第1页
信号传递网络课件_第2页
信号传递网络课件_第3页
信号传递网络课件_第4页
信号传递网络课件_第5页
已阅读5页,还剩63页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

NetworksofBiological

SignalingPathways

信号传递网络康海岐高方远马欣荣一、生物体内的信号传递1.Thesenseofsignaltransduction:intercelluarinformationexchange,regulationofmetobolism,onbodylevel2.Typeofsignals:

neuroregulation:neurotransmitter(乙酰胆碱,胺类氨基酸,调节肽类等),neuroregulator

chemicalsignals:cAMP,Ca2+,hormone,3.Mechanisms:3.1pr.←→pr.,3.2Ereaction(±p)3.3Eactivity3.4pr.degradation3.5intracelluarmessager3.6secondermessager

Ecell一、生物体内的信号传递4.Signalingpathways:4.1Ca2+

4.2cAMP4.3tyrosinekinase:EGFR,insulinR4.4otherpr.kinasecascade:PKC,PKA,PKG4.5intracelluarproteasecascadeSignaltransmissionoccur:i.Pr.—pr.Interactionii.Enzymaticreaction:±piii.Pr.Degradationiiii.ProductionofintracellularmessagerPeptideSignalinginPlants

PNAS,Nov.6,2001,vol.98no.23Inplants,onlyafewpeptidehavebeenidentified

thatactassignalingmolecules.

Incontrast,signalingpeptidesaremajorplayers

inallaspectsofthelifecycleinanimalsandyeast.suggeststhatsignalingmechanismsacrossthe

eukaryotickingdomarefundamentallydifferent.目前有关植物中信号肽的研究主要基于以下5种:番茄systeminPSKENOD40CLV3SCR18aa10-13

aa72-75aa53-55aa

2.最近分离到另外3种活性信号肽:RALF:rapidalkalinizationfactor,5kd;Tobaccosystemin:TobsysI,TobsysII1)tomatosystemin:由食草动物损伤后引起的系统损伤反应(asystemicwoundingresponse)

在悬浮培养细胞中可以激活促细胞分裂蛋白激酶[mitogen-activatedprotein(MAP)kinase]

并诱导培养基地碱化(alkalinization)

诱导蛋白酶抑制蛋白编码基因的表达(induceexpressionofproteinase-inhibitorprotein-encodinggenes)3.功能:Fromthefollowingssupporttheideathat

peptideandnonpeptidehormone-activatedsignalingcascadesarelinkedinplantsastheyareinanimals:

植物生长素类似5-羟色胺,乙烯类似一氧化碳,油菜素类固醇是类固醇,茉莉酮酸与前列腺素相关;

Systemin-inducedwoundresponseis

regulatedthroughtheoctadecanoidpathway,

involvingjasmonicacid;4.信号调控网络

PSK-inducedcellproliferationrequiresthehormonesauxinorcytokinin;SomeofthedevelopmentaldistortionsinrootsinducedonadditionofRALFarereminiscentofimpairednonpeptide

hormone-controlledprocesses.因此,揭开两种信号cascades之间关系,将是非常有趣的事。二、海马趾CA1神经元区室化模型

中的15个信号途径A:EGF,SOSB:GEF,RasC:cAMP,AC1,AC2D:GE:AA,PLA2F:PLC,PLC

G:DAG,IP3H:MAPKCascadeI:CaMKIIJ:PKAK:PKCL:Ca,IP3M:CaMN:CaNO:PP1

ReactionA:EGF,SOS

ReactionB:GEF,RasReactionD:GReactionE:AA,PLA2ReactionsF,G:PLC,PLC,DAG,IP3ThevariousphosphorylationstatesofCaMKIIhavedifferentenzymekinetics,andeachofthesewereexplicitlymodeled.Forsimplicitytheautophosphorylationstepsarerepresentedbyasingleenzymearrowinthisfigure,withCaMKII_aasthecombinedactivityofthevariousphosphorylationstates.Theindividualkinetictermsusedinthemodelareindicatedbythemultipleratereferencesonthearrows.ReactionI:CaMKIIReactionJ:PKAReactionK:PKC

ReactionM:CaMReactionN:CaN2.Materialsandmethord(1).HippocampalCA1neuron(inGENSIS),(2).NMDAR[ondendriticspine(树突棘)onthemodel](3).Synapticinput(3tetanicburstsat100HZ,1seach)→LTP→Ca2+waveforms3.ComputationformulationGenesisformulation:

S+E<--k2---k1-->SE---k3--->P+E

Vmax=maxvelocity=k3.

Substrateissaturating,soallofEisinSEform.

SoVmax.[Etot]=[SE].k3==[Etot].k3Km=(k3+k2)/k1

k2=k3*4

Kd=Kb/KfIf[A]*[Bhalf]*Kf=[Chalf=Bhalf]*Kbthen[A]=Kb/Kf=KdKa=Kf/Kb=1/Kd4.verification

(i).

Model

simplekineticschemes

thatcouldbecalculatedanalytically,compare

simulatedresults

with

analyticalresults.

(ii).

Usethelawofmassconservationand

microscopicreversibilityprinciples(微观可逆性原理)

→test

accuracyincomplexreactionschemes.

(iii).

Run

thesamemodel

atdifferenttimesteps,comparetheresultingsimulatedvalues.5.ProteinKinaseCmodelingexampleSimulationparameters:PKCReactionK:PKC

ReferencesFigure

Reac#

kf

kb

K

1

1

50

K

2

2E-10

0.1

K

3

1.2705

3.5026

K

4

0.000000002

0.1

K

5

1

0.1

K

6

2

0.2

K

7

0.000001

0.5

K

8

1.3333E-08

8.6348

K

9

0.000000001

0.1

K

10

0.00000003

2

ReferencesConcsK:PKC

ReferencesFigure

Name

Conc

K

PKC_inactive

1

1.

Review:Y.Nishizuka,Nature334,661(1988)2.

J.D.SchaechterandL.I.Benowitz,J.Neurosci.13,4361(1993)3.

T.Shinomura,Y.Asaoka,M.Oka,K.Yoshida,Y.Nishizuka,Proc.Natl.Acad.Sci.U.S.A.88,5149(1991)U.Kikkawa,Y.Takai,R.Minakuchi,S.Inohara,Y.Nishizuka,J.Biol.Chem.257,13341(1982).A.BlockdiagramofactivationforPKCpathwaybyCa2+,AAandDAG.builtupsimulationsiteratively:First:matchedAAactivationofPKCatzeroCa.Then:matchedactivationofPKCwithCaatzeroAA,Third:matchedthecurvesinBwith1uMCaandvaryingAA.Four:testthematchforC,withvaryingCaand50uMAA.Last:incorporatedDAGinteractionsintothemodel.B:ActivationofPKCbyAA,with(triangles)orwithout(squares)1mMCa2+.Opensymbolsanddashedlinesrepresentsimulations,solidsymbolsandsolidlinesareexperimentaldata.Shows:Ca2+isnecessaryfortheactivationofPKC.experimentalconcentration-effectcurvesfromtwomainsources:J.D.SchaechterandL.I.Benowitz,J.Neurosci.

13,4361(1993);T.Shinomura,Y.Asaoka,M.Oka,K.Yoshida,Y.Nishizuka,Proc.Natl.Acad.Sci.U.S.A.

88,5149(1991)C:ActivationofPKCbyCa2+,with(triangles)orwithout(squares)50mMAA.Thecurveinthepresenceof50mMAA(triangles)waspredictedfromtheparametersobtainedbymatchingthecurvesinBandthecurvewithoutAA(squares)inC,withoutfurtheradjustment.D:ActivationofPKCbyDAG,with(triangles)orwithout(squares)50mMAA.BothcurvesinDwereobtainedinthepresenceof1mMCa2+.DuetodifferentmethodsforestimatingDAGconcentrationsthelevelsofDAGusedinthemodelarescaled15-foldupwithrespecttotheexperimentalconditionsfromShinomuraetal.四、developethenetworkmodelinstagesFirst:modelindividualpathwaysThen:examinexperimentallydefinedcombinationsoftwoorthreesuchindividualpathwaysandtestthesecombinedmodelsagainstpublisheddata.Third:repeatthisprocessusinglargerassembliesofpathwaysuntiltheentirenetworkmodelofinteractingpathwayswasformed.Pathwayswerelinkedbytwokindsofinteractions:(i)SecondmessengerssuchasAAandDAG,producedbyonepathwaywereusedasinputstootherpathways.(ii)Enzymeswhoseactivationwasregulatedbyonepathwaywerecoupledtosubstratesbelongingtootherpathways.1、one

SignalingpathwaysexampleS

(1).EGF’sstimulationofMAPK1,2Fig.2.EGFreceptorsignalingpathways.(A).Blockdiagramofsignalingpathways.Rectanglesrepresentenzymes,andcirclesrepresentmessengermolecules.ThismodelusedmodulesshowninFig.1,reactionA(EGF),B(Ca2+/CaM),E(AA,PLA2),H(PKC),F(PLCγ,DAG,IP3),H(MAPKascade),K(PKC),I(CaMKII),L(Ca,IP3).

Fig.2BthetimecourseofactivationofMAPKbyEGF(B)Predicted(opentriangle)andexperimental(filledtriangles)timecourseofresponseofMAPKtoasteady

EGFstimulusof100nM.theyaxisrepresentsfractionalactivation.

ThefallintheMAPKactivityaftertheinitialstimulationisduetoacombinationofEGFreceptorinternalizationandMAPKphosphorylationandinactivationofSoS.1、one

SignalingpathwaysexampleS

(2).ActivationofPLCγ

byCa2+

inthepresence(triangles)orabsence(squares)ofEGF.

(C)Concentration-effectcurves.Dashedlinesaremodeldata,andsolidlinesareexperimentaldata.Theyaxisrepresentsactivation.Threestimulusconditions:

10minat5nMEGF(shortbar,circles),100minat2nMEGF(longbar,squares),100minat5nMEGF(longbar,triangles).Onlythethirdconditionsucceedsincausingactivationofthefeedbackloop.Why?2、Twoconnectedpathways

(1).ActivationofthefractionalfeedbackloopbyEGFreceptor:(D)ActivationoffeedbackloopbyEGF.B(basal),T(threshold),andA(active).PointArepresentshighactivityforbothPKCandMAPK,whereaspointBrepresentslowactivity.Bothofthesepointsrepresentdistinctsteady-statelevels.Suchasystemwithtwodistinctsteadystatesisabistablesystem.ThebifurcationpointTisimportantbecauseitdefinesthresholdstimulation.2.(1)Activationofthefractionalfeedbackloop

byEGFreceptor:(E)Bistabilityplotforfeedbackloop

Bistabilityispresentoverarangecomparabletotheexperimentaluncertainty,indicatingthatthephenomenonisrobust.(Horizontalstripes:experimentaluncertaintyinconcentration;diagonalstripes,simulatedbistabilityrangeforconcentrations.)MAPKhasaparticularlylargeuncertaintyinconcentrationrangebecauseoflargedifferencesintissuedistributions.2.(1)ActivationofthefractionalfeedbackloopbyEGFreceptor:(F)estimatedexperimetaluncertaintyinEparametersinitiallyactivating:asuprathresholdstimulus,andthenoneofthreeinhibitoryinputswasapplied:10minat8nM(shortbar,circles),20minat4nM(longbar,squares),and20minat8nM

(longbar,triangles.).Onlythethirdconditionisabletoinactivatethefeedbackloop.Thereboundinthefirsttwocasesisduetotwofactors:thepersistenceofAAduetoarelativelyslowtimecourseofremovalandthetimecourseofdephosphorylationofactivatedkinasesintheMAPKcascade.2.(1)ActivationofthefractionalfeedbackloopbyEGFreceptor:(G)InactivationoffeedbackloopbyMKP-1.

2.(1)ActivationofthefractionalfeedbackloopbyEGFreceptor:(H)Thresholdsforinactivationoffeedbackloop.MKPwasappliedforvaryingtimesandamounts.AthighMKPlevels,inactivationoccursmorequickly,butthereisaminimumthresholdofnearly10min.Conversely,whenMKPisappliedforverylongtimes,atleast2nMMKPisrequiredtoinactivatethefeedbackloop.SomeconclusionsforEGFRsignalingpathways(1).100nMEGFcanactivateMAPK.(2).Ca2+activatePLCγ,whichhasmorehighactivityunder0.1uMEGF.(3).100minat5nMEGFactivatedthefeedbackloop.(4).ActivationofMAPKandPKCbyEGFhasathreshold(pointT).(5).ThephenomenonisrobustascomparingwithSimandExptonKmandConc.(6).MPK-1(20min,8nM)caninactivatethefeedbackloop.(7).HighMKPlevel,necessaryfornearly10min.

LongtimeapplicationofMKPrequiresatleast2nMMKP.Aboutbistablesystem(1).Suchabistablesystemhasthepotentialtostoreinformation.Signalingevents

[theinitialstimulation

(amplitudeandduration)]thatpushthelevelsofeitheractivatedPKCoractivatedMAPK

pasttheintersectionpointTwillcausethesystemtoflipfromonestatetoanother.Thisanalysiscanbegeneralizedtoanycombinationofpathwaysinafeedbackloop.(2).Theemergentpropertiesofthisfeedbacksystemdefinenotonlytheamplitudeanddurationoftheextracellularsignalrequiredtoactivatethesystembutalsothemagnitudeanddurationofprocessessuchasphosphataseactionrequiredtodeactivatethesystem.(3).Thesepropertiesmakeafeedbacksystem,onceactivated,capableofdeliveringaconstantoutputinamannerunaffectedbysmallfluctuationscausedbyactivatingordeactivatingevents.Thiscapabilitytodeliverastimulus-triggeredconstantoutputsignalevenafterthestimulusiswithdrawnmayhavenumerousbiologicalconsequences.2.(2)CaMKII

(Ca2+/calmodulin-dependentproteinkinaseII)functionsinLTPofsynapticresponsesinthehippocampus.ThecAMPpathwaygatesCaMKIIsignalingthroughtheregulationofproteinphosphatases.NMDARandCainfluxaremodeledinacompartmentalmodelofaCA1neuronwithaseriesofthreetetanicstimuliat100Hz,lasting1seach,separatedby10min.ThismodelusedmodulesshowninFig.1,C,I,J,M,N,andO(BtoE).Opensquares:fullmodel;Filledtriangles:cAMP(fixedatrestingconcentrations→preventPKAactivity↑).2.(2)(B)ActivationofCaMKII.

TheinitialincreaseinintracellularCa2+

causedanactivationofCaMKII,AC1,andCaNthroughCaMbindingandofPKAthroughincreaseincAMPproducedthroughactivationofAC1-AC8.

cAMP↑→PKAactivation→PP1↓→CaMKII↑ThepresenceofacAMP-operatedgateleadstoalargeincreaseintheamplitudeoftheCaMKIIresponseandprolongationofitsactivity.Nevertheless,itdoesnotleadtoapersistentactivationofCaMKII.

2.(2)(C)ActivationofPKA.AC1-AC8bindingtoCa/CaM↓producingcAMP.↓PKAactivityrisessharplyOtherwise,itsactivity:don’trise2.(2)(D)ActivityofPP1.[Ca/CaM↑+cAMP(fixed)]→CaNactivation↑→smalltransientscAMPfixed→PKAactivation↓cAMPunfixed→PKAactivation↑→PP1activity↓ActivePP1→dephosphorylateCaMKII(Thr286)→CaMKII↓.2.(2)(E)CaN(PP2B)activationby

Ca/CaMelevation.Thefullmodel–cAMPfixedcurvesoverlapalmosterfectly.

↓CaNuninfluencedbycAMP四、3.Amodelforinteractionbetween4signalingpathways:formanetwork(PKC、MAPKpathways+CaMKII、cAMPpathways)Glu(+postsynapticdepolarization)

→Ca2+influxthroughNMDAR→[Ca2+]↑

→postsynapticPK(CaMKII,PKC,PKA,MAPK)↑四、3.Combinedmodelwithfeedbackloop,synapticinput,andCaMKIIactivityandRegulation.cPLA2(heldactivity)→lessAA→FBOFFMKP(timerofFBinearlyLTPofsynapse)→FBOFFcPLA2(activity↑)→AA↑→FBON四、3.ActivitypromajorenzymesinpathwayFigBtoG

▲:fullmodel(FBON)□:feedbackblocked(FBOFF)

(AAfixedatrestingconcentrations)FBON

:presentfeedbackFBOFF:absencefeedback

四、3.(B)ActivityproPKCFBOFF:→PKC↓FBON→largersuccessivespikes(initialspike+FBON)

→DAG+AA→PKC↑↑四、3.(C)

ActivityproMAPKFBON

→MAPKturnonFBOFF

→MAPKturnoff(initialspike+FBON)

→DAG+AA→PKC↑↑→MAPK↑(steady)

四、3.(D)ActivityproPKA.Ca2+inflow→AC1,8↑→PKA↑Ca2+

→identicalPKA↑FBON:PKC→

AC2↑→cAMP↑→PKA↑↑

sustainedPKC→sustainedPKAactivitySeveralemergentpropertiesofnetwork(1).Extendedsignalduration.(2).Activationoffeedbackloop.(3).Definitionofthresholdstimulationforbiologicaleffects.(4).Multiplesignaloutputs.四、3.(E)ActivityproCaMKII.Ca2+inflow→CaMKII↑Ca2+

→identicalCaMKII↑FBON:PKC→AC2↑→cAMP↑→PKAbaseline↑(twofold)PKA↑→PP1↓→CaMKII↑{

[dephosphorylateCaMKII(Thr286)]→CaMKIIautophosphorylation↓}四、3.(F)ActivityproPP1.Ca2+→PP1↓(overlap:FBON,FBOFF)FBON→PKA↑(sustained)→PP1↓→PP1(sustained)CaMKII↑四、(G)ActivityproCaN(PP2B).FBOFForFBON:

CaN

isnaffected

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论