2022年四川省遂宁市中考数学试卷及答案_第1页
2022年四川省遂宁市中考数学试卷及答案_第2页
2022年四川省遂宁市中考数学试卷及答案_第3页
2022年四川省遂宁市中考数学试卷及答案_第4页
2022年四川省遂宁市中考数学试卷及答案_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年四川省遂宁市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣2的倒数是()A.2 B.﹣2 C. D.﹣2.(4分)下面图形中既是轴对称图形又是中心对称图形的是()A.科克曲线 B.笛卡尔心形线 C.阿基米德螺旋线 D.赵爽弦图3.(4分)2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学记数法表示为()A.198×103 B.1.98×104 C.1.98×105 D.1.98×1064.(4分)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大 B.美 C.遂 D.宁5.(4分)下列计算中正确的是()A.a3•a3=a9 B.(﹣2a)3=﹣8a3 C.a10÷(﹣a2)3=a4 D.(﹣a+2)(﹣a﹣2)=a2+46.(4分)若关于x的方程=无解,则m的值为()A.0 B.4或6 C.6 D.0或47.(4分)如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是()A.cm2 B.cm2 C.175πcm2 D.350πcm28.(4分)如图,D、E、F分别是△ABC三边上的点,其中BC=8,BC边上的高为6,且DE∥BC,则△DEF面积的最大值为()A.6 B.8 C.10 D.129.(4分)已知m为方程x2+3x﹣2022=0的根,那么m3+2m2﹣2025m+2022的值为()A.﹣2022 B.0 C.2022 D.404410.(4分)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是()①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;A.①③ B.①②③ C.②③ D.①②④二、填空题(本大题共5个小题,每小题4分,共20分.)11.(4分)遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是.12.(4分)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=.13.(4分)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为.14.(4分)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为.15.(4分)抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a﹣b+c,则m的取值范围是.三、解答题(本大题共10个小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16.(7分)计算:tan30°+|1﹣|+(π﹣)0﹣()﹣1+.17.(7分)先化简,再求值:(1﹣)2÷,其中a=4.18.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是AD的中点,连接OE,过点D作DF∥AC交OE的延长线于点F,连接AF.(1)求证:△AOE≌△DFE;(2)判定四边形AODF的形状并说明理由.19.(9分)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?20.(9分)北京冬奥会、冬残奥会的成功举办推动了我国冰雪运动的跨越式发展,激发了青少年对冰雪项目的浓厚兴趣.某校通过抽样调查的方法,对四个项目最感兴趣的人数进行了统计,含花样滑冰、短道速滑、自由式滑雪、单板滑雪四项(每人限选1项),制作了如图统计图(部分信息未给出).请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了名学生;若该校共有2000名学生,估计爱好花样滑冰运动的学生有人;(2)补全条形统计图;(3)把短道速滑记为A、花样滑冰记为B、自由式滑雪记为C、单板滑雪记为D,学校将从这四个运动项目中抽出两项来做重点推介,请用画树状图或列表的方法求出抽到项目中恰有一项为自由式滑雪C的概率.21.(9分)在平面直角坐标系中,如果一个点的横坐标与纵坐标互为相反数,则称该点为“黎点”.例如(﹣1,1),(2022,﹣2022)都是“黎点”.(1)求双曲线y=上的“黎点”;(2)若抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”,当a>1时,求c的取值范围.22.(9分)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A处测得塔楼顶端点E的仰角∠GAE=50.2°,台阶AB长26米,台阶坡面AB的坡度i=5:12,然后在点B处测得塔楼顶端点E的仰角∠EBF=63.4°,则塔顶到地面的高度EF约为多少米.(参考数据:tan50.2°≈1.20,tan63.4°≈2.00,sin50.2°≈0.77,sin63.4°≈0.89)23.(10分)已知一次函数y1=ax﹣1(a为常数)与x轴交于点A,与反比例函数y2=交于B、C两点,B点的横坐标为﹣2.(1)求出一次函数的解析式并在图中画出它的图象;(2)求出点C的坐标,并根据图象写出当y1<y2时对应自变量x的取值范围;(3)若点B与点D关于原点成中心对称,求出△ACD的面积.24.(10分)如图⊙O是△ABC的外接圆,点O在BC上,∠BAC的角平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)若AB=6,AC=8,求点O到AD的距离.25.(12分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).(1)求抛物线的解析式;(2)如图1,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,﹣2),求△DEF周长的最小值;(3)如图2,N为射线CB上的一点,M是抛物线上的一点,M、N均在第一象限内,B、N位于直线AM的同侧,若M到x轴的距离为d,△AMN面积为2d,当△AMN为等腰三角形时,求点N的坐标.

2022年四川省遂宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)﹣2的倒数是()A.2 B.﹣2 C. D.﹣【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选:D.2.(4分)下面图形中既是轴对称图形又是中心对称图形的是()A.科克曲线 B.笛卡尔心形线 C.阿基米德螺旋线 D.赵爽弦图【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A.科克曲线既是轴对称图形又是中心对称图形,故本选项符合题意;B.笛卡尔心形线是轴对称图形,不是中心对称图形,故本选项不符合题意;C.阿基米德螺旋线不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.赵爽弦图不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:A.3.(4分)2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学记数法表示为()A.198×103 B.1.98×104 C.1.98×105 D.1.98×106【分析】把较大的数表示成科学记数法形式:a×10n,其中1≤a<10,n为正整数即可得出答案.【解答】解:198000=1.98×105,故选:C.4.(4分)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大 B.美 C.遂 D.宁【分析】根据图形,可以写出相对的字,本题得以解决.【解答】解:由图可知,我和美相对,爱和宁相对,大和遂相对,故选:B.5.(4分)下列计算中正确的是()A.a3•a3=a9 B.(﹣2a)3=﹣8a3 C.a10÷(﹣a2)3=a4 D.(﹣a+2)(﹣a﹣2)=a2+4【分析】根据同底数幂的乘法判断A选项;根据积的乘方判断B选项;根据幂的乘方和同底数幂的除法判断C选项;根据平方差公式判断D选项.【解答】解:A,原式=a6,故该选项不符合题意;B,原式=﹣8a3,故该选项符合题意;C,原式=a10÷(﹣a6)=﹣a4,故该选项不符合题意;D,原式=(﹣a)2﹣22=a2﹣4,故该选项不符合题意;故选:B.6.(4分)若关于x的方程=无解,则m的值为()A.0 B.4或6 C.6 D.0或4【分析】解分式方程可得(4﹣m)x=﹣2,根据题意可知,4﹣m=0或x=﹣=﹣,求出m的值即可.【解答】解:=,2(2x+1)=mx,4x+2=mx,(4﹣m)x=﹣2,∵方程无解,∴4﹣m=0或x=﹣=﹣,∴m=4或m=0,故选:D.7.(4分)如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是()A.cm2 B.cm2 C.175πcm2 D.350πcm2【分析】先利用勾股定理计算出AC=25cm,由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则可根据扇形的面积公式可计算出圆锥的侧面积.【解答】解:在Rt△AOC中,AC==25(cm),所以圆锥的侧面展开图的面积=×2π×7×25=175π(cm2).故选:C.8.(4分)如图,D、E、F分别是△ABC三边上的点,其中BC=8,BC边上的高为6,且DE∥BC,则△DEF面积的最大值为()A.6 B.8 C.10 D.12【分析】过点A作AM⊥BC于M,交DE于点N,则AN⊥DE,设AN=a,根据DE∥BC,证出△ADE∽△ABC,根据相似三角形对应高的比等于相似比得到DE=a,列出△DEF面积S的函数表达式,根据配方法求最值即可.【解答】解:如图,过点A作AM⊥BC于M,交DE于点N,则AN⊥DE,设AN=a,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴=,∴=,∴DE=a,∴△DEF面积S=×DE×MN=×a•(6﹣a)=﹣a2+4a=﹣(a﹣3)2+6,∴当a=3时,S有最大值,最大值为6.故选:A.9.(4分)已知m为方程x2+3x﹣2022=0的根,那么m3+2m2﹣2025m+2022的值为()A.﹣2022 B.0 C.2022 D.4044【分析】将方程的根代入方程,化简得m2+3m=2022,将代数式变形,整体代入求值即可.【解答】解:∵m为方程x2+3x﹣2022=0的根,∴m2+3m﹣2022=0,∴m2+3m=2022,∴原式=m3+3m2﹣m2﹣3m﹣2022m+2022=m(m2+3m)﹣(m2+3m)﹣2022m+2022=2022m﹣2022﹣2022m+2022=0.故选:B.10.(4分)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是()①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;A.①③ B.①②③ C.②③ D.①②④【分析】由四边形ABCD、四边形BEFG是正方形,可得△ABG≌△CBE(SAS),即得∠BAG=∠BCE,即可证明∠POC=90°,可判断①正确;取AC的中点K,可得AK=CK=OK=BK,即可得∠BOA=∠BCA,从而△OBP∽△CAP,判断②正确,由∠AOC=∠ADC=90°,可得A、O、C、D四点共圆,而AD=CD,故∠AOD=∠DOC=45°,判断④正确,不能证明OB平分∠CBG,即可得答案.【解答】解:∵四边形ABCD、四边形BEFG是正方形,∴AB=BC,BG=BE,∠ABC=90°=∠GBE,∴∠ABC+∠CBG=∠GBE+∠CBG,即∠ABG=∠EBC,∴△ABG≌△CBE(SAS),∴∠BAG=∠BCE,∵∠BAG+∠APB=90°,∴∠BCE+∠APB=90°,∴∠BCE+∠OPC=90°,∴∠POC=90°,∴EC⊥AG,故①正确;取AC的中点K,如图:在Rt△AOC中,K为斜边AC上的中点,∴AK=CK=OK,在Rt△ABC中,K为斜边AC上的中点,∴AK=CK=BK,∴AK=CK=OK=BK,∴A、B、O、C四点共圆,∴∠BOA=∠BCA,∵∠BPO=∠CPA,∴△OBP∽△CAP,故②正确,∵∠AOC=∠ADC=90°,∴∠AOC+∠ADC=180°,∴A、O、C、D四点共圆,∵AD=CD,∴∠AOD=∠DOC=45°,故④正确,由已知不能证明OB平分∠CBG,故③错误,故正确的有:①②④,故选:D.二、填空题(本大题共5个小题,每小题4分,共20分.)11.(4分)遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是23.【分析】先将题目中的数据按照从小到大排列,然后即可写出相应的中位数.【解答】解:将22,24,20,23,25按照从小到大排列是:20,22,23,24,25,∴这五个数的中位数是23,故答案为:23.12.(4分)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=2.【分析】根据数轴可得:﹣1<a<0,1<b<2,然后即可得到a+1>0,b﹣1>0,a﹣b<0,从而可以将所求式子化简.【解答】解:由数轴可得,﹣1<a<0,1<b<2,∴a+1>0,b﹣1>0,a﹣b<0,∴|a+1|﹣+=a+1﹣(b﹣1)+(b﹣a)=a+1﹣b+1+b﹣a=2,故答案为:2.13.(4分)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为4.【分析】根据正多边形的性质和直角三角形中,30°角所对的边是斜边的一半可以求得AF的长.【解答】解:设AF=x,则AB=x,AH=6﹣x,∵六边形ABCDEF是正六边形,∴∠BAF=120°,∴∠HAF=60°,∴∠AHF=90°,∴∠AFH=30°,∴AF=2AH,∴x=2(6﹣x),解得x=4,∴AB=4,即正六边形ABCDEF的边长为4,故答案为:4.14.(4分)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为127.【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【解答】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.15.(4分)抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a﹣b+c,则m的取值范围是﹣4<m<0.【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置及抛物线经过(1,0)可得a,b,c的等量关系,然后将x=﹣1代入解析式求解.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴﹣<0,∴b>0,∵抛物线经过(0,﹣2),∴c=﹣2,∵抛物线经过(1,0),∴a+b+c=0,∴a+b=2,b=2﹣a,∴y=ax2+(2﹣a)x﹣2,当x=﹣1时,y=a+a﹣2﹣2=2a﹣4,∵b=2﹣a>0,∴0<a<2,∴﹣4<2a﹣4<0,故答案为:﹣4<m<0.三、解答题(本大题共10个小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16.(7分)计算:tan30°+|1﹣|+(π﹣)0﹣()﹣1+.【分析】根据特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根可以解答本题.【解答】解:tan30°+|1﹣|+(π﹣)0﹣()﹣1+=+1﹣+1﹣3+4=3.17.(7分)先化简,再求值:(1﹣)2÷,其中a=4.【分析】根据分式的运算法则进行化简,然后将a的值代入即可.【解答】解:原式===.当a=4时,原式=.18.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是AD的中点,连接OE,过点D作DF∥AC交OE的延长线于点F,连接AF.(1)求证:△AOE≌△DFE;(2)判定四边形AODF的形状并说明理由.【分析】(1)利用全等三角形的判定定理即可.(2)先证明四边形AODF为平行四边形,再结合∠AOD=90°,即可得出结论.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵DF∥AC,∴∠OAD=∠ADF,∵∠AEO=∠DEF,∴△AOE≌△DFE(ASA).(2)解:四边形AODF为矩形.理由:∵△AOE≌△DFE,∴AO=DF,∵DF∥AC,∴四边形AODF为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,即∠AOD=90°,∴平行四边形AODF为矩形.19.(9分)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?【分析】(1)根据购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元,可以列出相应的二元一次方程组,然后求解即可;(2)根据要求篮球不少于30个,且总费用不超过5500元,可以列出相应的不等式组,从而可以求得篮球数量的取值范围,然后即可写出相应的购买方案.【解答】解:(1)设篮球的单价为a元,足球的单价为b元,由题意可得:,解得,答:篮球的单价为120元,足球的单价为90元;(2)设采购篮球x个,则采购足球为(50﹣x)个,∵要求篮球不少于30个,且总费用不超过5500元,∴,解得30≤x≤33,∵x为整数,∴x的值可为30,31,32,33,∴共有四种购买方案,方案一:采购篮球30个,采购足球20个;方案二:采购篮球31个,采购足球19个;方案三:采购篮球32个,采购足球18个;方案四:采购篮球33个,采购足球17个.20.(9分)北京冬奥会、冬残奥会的成功举办推动了我国冰雪运动的跨越式发展,激发了青少年对冰雪项目的浓厚兴趣.某校通过抽样调查的方法,对四个项目最感兴趣的人数进行了统计,含花样滑冰、短道速滑、自由式滑雪、单板滑雪四项(每人限选1项),制作了如图统计图(部分信息未给出).请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了100名学生;若该校共有2000名学生,估计爱好花样滑冰运动的学生有800人;(2)补全条形统计图;(3)把短道速滑记为A、花样滑冰记为B、自由式滑雪记为C、单板滑雪记为D,学校将从这四个运动项目中抽出两项来做重点推介,请用画树状图或列表的方法求出抽到项目中恰有一项为自由式滑雪C的概率.【分析】(1)由爱好花样滑冰运动的40人,占调查人数的40%,可求出调查人数,用爱好花样滑冰运动的学生占调查人数的40%,可估计2000名学生中,爱好花样滑冰运动的学生人数;(2)求出爱好单板滑雪、爱好自由式滑雪的学生数,补全条形统计图即可;(3)列表求出12种等可能的结果,找出恰有一个项目是自由式滑雪记C的结果数,然后根据概率公式计算.【解答】解:(1)∵调查的学生中,爱好花样滑冰运动的学生有40人,占调查人数的40%,∴一共调查了40÷40%=100(人),若该校共有2000名学生,估计爱好花样滑冰运动的学生有2000×40%=800(人),故答案为:100,800;(2)∵一共调查了100名学生,爱好单板滑雪的占10%,∴爱好单板滑雪的学生数为100×10%=10(人),∴爱好自由式滑雪的学生数为100﹣40﹣20﹣10=30(人),补全条形统计图如下:(3)从这四个运动项目中抽出两项运动的所有机会均等的结果一共有12种,抽到项目中恰有一个项目是自由式滑雪记C的结果有:(A,C),(B,C),(D,C)(C,A),(C,B),(C,D),一共6种等可能的结果,∴P(抽到项目中恰有一项为自由式滑雪C)==.答:抽到项目中恰有一项为自由式滑雪C的概率是.21.(9分)在平面直角坐标系中,如果一个点的横坐标与纵坐标互为相反数,则称该点为“黎点”.例如(﹣1,1),(2022,﹣2022)都是“黎点”.(1)求双曲线y=上的“黎点”;(2)若抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”,当a>1时,求c的取值范围.【分析】(1)设双曲线y=上的“黎点”为(m,﹣m),构建方程求解即可;(2)抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”,推出方程ax2﹣7x+c=﹣x有且只有一个解,即ax2﹣6x+c=0,Δ=36﹣4ac=0,可得结论.【解答】解:(1)设双曲线y=上的“黎点”为(m,﹣m),则有﹣m=,∴m=±3,经检验,m=±3的分式方程放解,∴双曲线y=上的“黎点”为(3,﹣3)或(﹣3,3);(2)∵抛物线y=ax2﹣7x+c(a、c为常数)上有且只有一个“黎点”,∴方程ax2﹣7x+c=﹣x有且只有一个解,即ax2﹣6x+c=0,Δ=36﹣4ac=0,∴ac=9,∴a=,∵a>1,∴0<c<9.22.(9分)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A处测得塔楼顶端点E的仰角∠GAE=50.2°,台阶AB长26米,台阶坡面AB的坡度i=5:12,然后在点B处测得塔楼顶端点E的仰角∠EBF=63.4°,则塔顶到地面的高度EF约为多少米.(参考数据:tan50.2°≈1.20,tan63.4°≈2.00,sin50.2°≈0.77,sin63.4°≈0.89)【分析】如图,延长EF交AG于点H,则EH⊥AG,作BP⊥AG于点P,则四边形BFHP是矩形,设EF=a米,BF=b米,构建方程组求解.【解答】解:如图,延长EF交AG于点H,则EH⊥AG,作BP⊥AG于点P,则四边形BFHP是矩形,∴FB=PH,FH=PB,由i=5:12,可以假设BP=5x,AP=12x,∵PB2+PA2=AB2,∴(5x)2+(12x)2=26,∴x=2或﹣2(舍去),∴PB=FH=10,AP=24,设EF=a米,BF=b米,∵tan∠EBF=,∴=2,∴a=2b①,∵tan∠EAH===,∴=1.2②,由①②得a=47,b=23.5,答:塔顶到地面的高度EF约为47米.23.(10分)已知一次函数y1=ax﹣1(a为常数)与x轴交于点A,与反比例函数y2=交于B、C两点,B点的横坐标为﹣2.(1)求出一次函数的解析式并在图中画出它的图象;(2)求出点C的坐标,并根据图象写出当y1<y2时对应自变量x的取值范围;(3)若点B与点D关于原点成中心对称,求出△ACD的面积.【分析】(1)根据B点的横坐标为﹣2且在反比例函数y2=的图象上,可以求得点B的坐标,然后代入一次函数解析式,即可得到一次函数的解析式,再画出相应的图象即可;(2)将两个函数解析式联立方程组,即可求得点C的坐标,然后再观察图象,即可写出当y1<y2时对应自变量x的取值范围;(3)根据点B与点D关于原点成中心对称,可以写出点D的坐标,然后点A、D、C的坐标,即可计算出△ACD的面积.【解答】解:(1)∵B点的横坐标为﹣2且在反比例函数y2=的图象上,∴y2==﹣3,∴点B的坐标为(﹣2,﹣3),∵点B(﹣2,﹣3)在一次函数y1=ax﹣1的图象上,∴﹣3=a×(﹣2)﹣1,解得a=1,∴一次函数的解析式为y=x﹣1,∵y=x﹣1,∴x=0时,y=﹣1;x=1时,y=0;∴图象过点(0,﹣1),(1,0),函数图象如右图所示;(2),解得或,∵一次函数y1=ax﹣1(a为常数)与反比例函数y2=交于B、C两点,B点的横坐标为﹣2,∴点C的坐标为(3,2),由图象可得,当y1<y2时对应自变量x的取值范围是x<﹣2或0<x<3;(3)∵点B(﹣2,﹣3)与点D关于原点成中心对称,∴点D(2,3),作DE⊥x轴交AC于点E,将x=2代入y=x﹣1,得y=1,∴S△ACD=S△ADE+S△DEC==2,即△ACD的面积是2.24.(10分)如图⊙O是△ABC的外接圆,点O在BC上,∠BAC的角平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)若AB=6,AC=8,求点O到AD的距离.【分析】(1)想办法证明OD⊥PD即可;(2)根据两个角相等证明△BAD∽△CDP;(3)证明四边形ODGC是矩形,先根据等角的三角函数可得PG的长,最后根据线段的和可得结论.【解答】(1)证明:如图1,连接OD.∵AD平分∠BAC,∴∠BAD=∠CAD,∴=,∴∠BOD=∠COD=90°,∵BC∥PD,∴∠ODP=∠BOD=90°,∴OD⊥PD,∵OD是半径,∴PD是⊙O的切线.(2)证明:∵BC∥PD,∴∠PDC=∠BCD.∵∠BCD=∠BAD,∴∠BAD=∠PDC,∵∠ABD+∠ACD=180°,∠ACD+∠PCD=180°,∴∠ABD=∠PCD,∴△ABD∽△DCP;(3)解:如图,过点O作OE⊥AD于E,连接OD,∵BC是⊙O的直径,∴∠BAC=∠BDC=90°,∵AB=6,AC=8,∴BC==10,∵BD=CD,∴BD=CD=5,由(2)知:△ABD∽△DCP,∴=,即=,∴CP=,∴AP=AC+CP=8+=,∵∠ADB=∠ACB=∠P,∠BAD=∠DAP,∴△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论