版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.-2的倒数是()A.-2 B. C. D.22.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A. B. C. D.3.实数a在数轴上的位置如图所示,则下列说法不正确的是()A.a的相反数大于2B.a的相反数是2C.|a|>2D.2a<04.如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为()A.9 B.10 C.12 D.145.如图,点A,B,C在⊙O上,∠ACB=30°,⊙O的半径为6,则的长等于()A.π B.2π C.3π D.4π6.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°7.点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为()A.0 B.﹣1 C.1 D.720178.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+ B.2+2 C.4 D.39.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9172095关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是2610.下面运算结果为的是A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.新定义[a,b]为一次函数(其中a≠0,且a,b为实数)的“关联数”,若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程1x-1+112.在平面直角坐标系中,点A的坐标是(-1,2).作点A关于x轴的对称点,得到点A1,再将点A1向下平移4个单位,得到点A2,则点A2的坐标是_________.13.如图所示,平行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加__________条件,可以判定四边形AECF是平行四边形.(填一个符合要求的条件即可)14.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是_________.(填序号)15.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为_________.16.如图,AB=AC,AD∥BC,若∠BAC=80°,则∠DAC=__________.三、解答题(共8题,共72分)17.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x/(元/千克)506070销售量y/千克1008060(1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?18.(8分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF沿线段AB向右平移.(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?19.(8分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.20.(8分)列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.21.(8分)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.22.(10分)路边路灯的灯柱垂直于地面,灯杆的长为2米,灯杆与灯柱成角,锥形灯罩的轴线与灯杆垂直,且灯罩轴线正好通过道路路面的中心线(在中心线上).已知点与点之间的距离为12米,求灯柱的高.(结果保留根号)23.(12分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)24.如图,AB是⊙O的直径,C是弧AB的中点,弦CD与AB相交于E.若∠AOD=45°,求证:CE=ED;(2)若AE=EO,求tan∠AOD的值.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】
根据倒数的定义求解.【详解】-2的倒数是-故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握2、A【解析】
首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.3、B【解析】试题分析:由数轴可知,a<-2,A、a的相反数>2,故本选项正确,不符合题意;B、a的相反数≠2,故本选项错误,符合题意;C、a的绝对值>2,故本选项正确,不符合题意;D、2a<0,故本选项正确,不符合题意.故选B.考点:实数与数轴.4、A【解析】
利用平行四边形的性质即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD=BC=3,OD=OB==2,OA=OC=4,∴△OBC的周长=3+2+4=9,故选:A.【点睛】题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.5、B【解析】
根据圆周角得出∠AOB=60°,进而利用弧长公式解答即可.【详解】解:∵∠ACB=30°,∴∠AOB=60°,∴的长==2π,故选B.【点睛】此题考查弧长的计算,关键是根据圆周角得出∠AOB=60°.6、C【解析】
依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.7、B【解析】
根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【详解】解:由题意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故选B.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键.8、B【解析】分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.详解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选B.点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.9、C【解析】
根据众数、中位数、平均数以及方差的概念求解.【详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数==12,故本选项正确;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本选项错误.故选C.【点睛】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.10、B【解析】
根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】.,此选项不符合题意;.,此选项符合题意;.,此选项不符合题意;.,此选项不符合题意;故选:.【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.二、填空题(本大题共6个小题,每小题3分,共18分)11、53【解析】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为1x-1去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=53经检验x=53考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.12、(-1,-6)【解析】
直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案.【详解】∵点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,
∴A1(-1,-2),
∵将点A1向下平移4个单位,得到点A2,
∴点A2的坐标是:(-1,-6).
故答案为:(-1,-6).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.13、BE=DF【解析】可以添加的条件有BE=DF等;证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABD=∠CDB;又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.
∴∠AEF=∠CFE.∴AE∥CF;∴四边形AECF是平行四边形.(一组对边平行且相等的四边形是平行四边形)故答案为BE=DF.14、②③④【解析】试题解析:根据已知条件不能推出OA=OD,∴①错误;∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,∴②正确;∵∠BAC=90°,∠AED=∠AFD=90°,∴四边形AEDF是矩形,∵AE=AF,∴四边形AEDF是正方形,∴③正确;∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正确;∴②③④正确,15、1【解析】
连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【详解】连接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=,
∴CP=3x=1;故答案为:1.【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.16、50°【解析】
根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答.【详解】解:∵AB=AC,∠BAC=80°,∴∠B=∠C=(180°﹣80°)÷2=50°;∵AD∥BC,∴∠DAC=∠C=50°,故答案为50°.【点睛】本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等.三、解答题(共8题,共72分)17、(1)y=-2x+200(2)W=-2x2+280x-8000(3)售价为70元时,获得最大利润,这时最大利润为1800元.【解析】
(1)用待定系数法求一次函数的表达式;(2)利用利润的定义,求与之间的函数表达式;(3)利用二次函数的性质求极值.【详解】解:(1)设,由题意,得,解得,∴所求函数表达式为.(2).(3),其中,∵,∴当时,随的增大而增大,当时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.考点:二次函数的实际应用.18、(1)y=(0≤x≤4);(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.【解析】分析:(1)根据平移的性质得到DF∥AC,所以由平行线的性质、勾股定理求得GD=,BG==,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.详解:(1)如图(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.∵∠ACB=∠DFE=90°,D是AB的中点∴CD=AB,BF=DE,∴CD=BD=BF=BE,∵CF=BD,∴CD=BD=BF=CF,∴四边形CDBF是菱形;∵AC=BC,D是AB的中点.∴CD⊥AB即∠CDB=90°∵四边形CDBF为菱形,∴四边形CDBF是正方形.点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.19、(1)△ABC是等腰三角形;(2)△ABC是直角三角形;(3)x1=0,x2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考点:一元二次方程的应用.20、2.4元/米【解析】
利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.【详解】解:设去年用水的价格每立方米元,则今年用水价格为每立方米元由题意列方程得:解得经检验,是原方程的解(元/立方米)答:今年居民用水的价格为每立方米元.【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键.21、(1)证明见解析;(2)【解析】试题分析:(1)过点O作OG⊥DC,垂足为G.先证明∠OAD=90°,从而得到∠OAD=∠OGD=90°,然后利用AAS可证明△ADO≌△GDO,则OA=OG=r,则DC是⊙O的切线;
(2)连接OF,依据垂径定理可知BE=EF=1,在Rt△OEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在Rt△ABE中,利用锐角三角函数的定义求解即可.试题解析:(1)证明:过点O作OG⊥DC,垂足为G.
∵AD∥BC,AE⊥BC于E,
∴OA⊥AD.
∴∠OAD=∠OGD=90°.
在△ADO和△GDO中,
∴△ADO≌△GDO.
∴OA=OG.
∴DC是⊙O的切线.
(2)如图所示:连接OF.
∵OA⊥BC,
∴BE=EF=BF=1.在Rt△OEF中,OE=5,EF=1,∴OF=,∴AE=OA+OE=13+5=2.
∴tan∠ABC=.【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键.22、【解析】
设灯柱BC的长为h米,过点A作AH⊥CD于点H,过点B作BE⊥AH于点E,构造出矩形BCHE,Rt△AEB,然后解直角三角形求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年花卉保养服务协议范本
- 2023-2024学年浙江省温州市苍南县金乡卫城中学高三5月第二次联考数学试题文试卷
- 2023-2024学年浙江省金兰教育合作组织高三下学期质量调查(一)数学试题
- 2024年设计服务外包协议范本2
- 2024年深度钻井工程服务协议
- 2024年荒山开发承包协议样本
- 2024年个人消费贷款协议模板指南
- 2024年适用车辆租赁长租协议样式
- 底商租赁协议精简(2024年)
- 2024移动网络运营商服务协议
- 礼仪与教化介绍ppt
- 青少年社会工作方法青少年社会工作课件
- 上海市徐汇区2022年高考一模英语听力试题及原文带答案
- 初中数学华东师大版七年级上册整式的加减课件
- 6.2-质量管理体系要求-“6.2 质量目标及其实现的策划”条文理解与实施指导材(雷泽佳编制-2023)
- 英国工人阶级状况
- 洗胃教学护理技术查房实用课件
- 景观小品设计教学PPT全套教学课件
- 经济法基础-完整全套课件
- 高中通用技术-模拟综合练习卷-粤教版必修
- 传统文化创新:以新视角看世界文化
评论
0/150
提交评论