毕业设计(论文)-基于plc的步进电机控制系统设计_第1页
毕业设计(论文)-基于plc的步进电机控制系统设计_第2页
毕业设计(论文)-基于plc的步进电机控制系统设计_第3页
毕业设计(论文)-基于plc的步进电机控制系统设计_第4页
毕业设计(论文)-基于plc的步进电机控制系统设计_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕业设计(论文)—基于plc的步进电机控制系统设计基于PLC步进电机控制系统摘要:随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。步进电机是将电脉冲信号变换成机械角位移的一种装置,每个脉冲使转轴步进一个步距角增量,输出角位移与输入脉冲数成正比,转速与输入脉冲成正比,转速与输入脉冲频率成正比。步进电机的控制方式简单,属于开环控制,且无累积定位误差,有较高的定位精度,而PLC作为一种工业控制微机,是实现电机一体化的有力工具,因此基于PLC的步进电机控制技术已广泛用于数字定位控制中。本控制系统的设计,由硬件设计和软件设计两部分组成。其中,硬件设计主要包括步进电机的工作原理、步进电机的驱动电路设计、PLC的输入输出特性、PLC的外围电路设计以及PLC与步进电机的连接与匹配等问题的实现。软件设计包括主程序以及各个模块的控制程序,最终实现对步进电机转动方向及转动速度的控制。本系统具有智能性、实用性及可靠性的特点。关键词:步进电机、PLC、转速控制、方向控制SteppingmotorcontrolsystembasedonPLCAbstract:Withthedevelopmentofmicroelectronicsandcomputertechnology,thesteppermotorisincreasingdemanded,whichiswidelyusedinprinters,electrictoysandotherconsumerproducts,andCNCmachinetools,industrialrobots,medicalequipmentandotherelectricalmachineryproducts,andisappliedinthenationaleconomyinvariousfields.Researchingofsteppermotorcontrolsystemtoimprovethecontrolaccuracyandresponsespeed,energyconservationissoimportant.SteppermotorisadevicewhichwilltransformelectricalpulsesintomechanicalangulardisplacementsothatShaftofeachpulsetoastepanglesteppingincrement,SOoutputangulardisplacementisproportionaltotheinputpulses,speedisproportionaltotheinputpulsespeedandspeedisproportionaltoinputpulsefrequency.Steppermotorcontrolissimple,isopen-loopcontrol,andnoaccumulationofpositioningerror,ahighpositioningaccuracy,andthePLCasanindustrialcontrolcomputer,isapowerfultoolfortheintegrationofthemotor,Therefore,thesteppermotorcontrolbasedonPLCtechnologyhasbeenwidelyusedfordigitalpositioningcontrol.Thecontrolsystemconsistsofhardwareandsoftwaredesignoftwoparts.Amongthem,thehardwaredesignincludestheworkingprincipleofsteppermotor,steppermotordrivecircuitdesign,PLCinputandoutputcharacteristics,PLCandPLCexternalcircuitconnectionwiththesteppermotorandmatchingProblem.Softwaredesign,includingthemainprogramandeachmoduleofthecontrolprogram,ultimatelyrealizesonthesteppermotorrotationdirectionandrotationspeedcontrolThissystemhastheintelligence,practicalityandreliabilityfeatures.Keywords:Steppermotor,PLC,speedcontrol,directioncontrol目录1、绪论 11.2问题的提出 31.3设计目的及系统功能 42、PLC控制步进电机系统简介 52.1PLC控制系统 52.1.1PLC概述 52.1.2PLC系统的其它设备 92.1.3PLC的通信联网 92.1.4PLC控制系统的设计基本原则 92.1.5PLC软件系统及常用编程语言 92.1.6PLC的特点 102.1.7PLC的应用领域 112.1.8PLC未来展望 122.2步进电机 132.2.1步进电机概述 132.2.2步进电机的特性 132.2.3与直流电机的比较 142.2.4步进电机的种类 162.2.5反应式步进电机的控制 172.3本设计所用步进电机 203、硬件电路设计 223.1硬件设计思路 223.2总体设计框图 223.3外围电路设计及分析 233.3.1键盘控制电路 233.3.2步进电动机驱动电路 252.6.3LED数码显示电路 293.4步进电机控制系统电路图 324、软件设计 334.1可编程控制器软件设计原理 334.1.1可编程序控制器的工作原理 334.1.2扫描周期 344.2PLC的选型 354.2.1输入输出(I/O)点数的估算 354.2.2存储器容量的估算 354.2.3控制功能的选择 354.2.4机型的选择 374.3FX2N可编程序控制器简介 384.4PLC控制程序设计 394.4.1PLC控制系统的设计基本原则 394.4.2PLC编程步骤 394.4.3PLC提供的编程语言 394.5.1启动停止控制环节 414.5.2PLC实用驱动电源控制环节 42结论 46致谢 47参考文献 48附录 491、绪论1.1技术概述 在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用。无论是在工农业生产还是在日常生活中的家用电器,都大量地使用着各种各样的电动机。因此对电动机的控制变得越来越重要了。电动机的控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术、微机应用技术的最新发展成就。正是这些技术的进步使电动机控制技术化。步进电机是机电控制中一种常用的执行机构,其原理是通过对它每相线圈中的电流和顺序切换来使电机作步进式旋转。驱动电路由脉冲信号来控制,所以调节脉冲信号的频率便可改变步进电机的转速。通俗地说:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。通过控制脉冲个数即可以控制角位移量,从而达到准确定位的目的。同时通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的,现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM),混合式步进电机(HB)和单相式步进电机等。永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.50;反应式步进电机一般为三相,可实现大转矩输出,步进角一般为1.50,但噪声和振动都很大。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。混合式步进电机是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8“而五相步进角一般为0.720。这种步进电机的应用最为广泛。步进电机的一些基本参数:电机固有步距角:它表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给出了一个步距角的值,如86BYG250A型电机给出的值为0.90/1.80(表示半步工作时为0.90、整步工作时为1.80),这个步距角可以称之为“电机固有步距角”,它不一定是电机实际工作时的真正步距角,真正的步距角和驱动器有关。步进电机的相数:是指电机内部的线圈组数,目前常用的有二相、三相、四相、五相步进电机。电机相数不同,其步距角也不同,一般二相电机的步距角为0.90/1.80、三相的为0.750/1.50、五相的为0.360/0.720。在没有细分驱动器时,用户主要靠选择不同相数的步进电机来满足自己步距角的要求。如果使用细分驱动器,则“相数”将变得没有意义,用户只需在驱动器上改变细分数,就可以改变步距角。保持转矩:是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为衡量步进电机最重要的参数之一。比如,当人们说2Nm的步进电机,在没有特殊说明的情况下是指保持转矩为2Nm的步进电机。步进电机的一些特点:a.一般步进电机的精度为步进角的3%--5%,且不累积。b.步进电机外表允许的最高温度。c.步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在130C以上,有的甚至高达200C以上,所以步进电机外表温度80C-90C完全正常。d.步进电机的力矩会随转速的升高而下降。e.当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。f.步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声。介绍步进电机的一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。g.步进电动机以其显著的特点,在数字化制造时代发挥着重大的用途。伴随着不同的数字化技术的发展以及步进电机本身技术的提高,步进电机将会在更多的领域得到应用。PLC全称可编程控制器,是在电器控制技术和计算机技术的基础上开发出来的,并逐渐发展成为以微机处理器为核心,把自动化技术、计算机技术、通信技术融为一体的新型工业控制装置。目前,PLC已被广泛应用于各种生产机械和生产过程的自动控制中,成为一种最重要、最普及、应用场合最多的工业控制装置,被公认为现代工业自动化的三大支柱(PLC、机器人、CAD\CAM)之一。从近年的统计数据看,在世界范围内PLC产品的产量、销量、用量高居工业控制装置榜首,而且市场需求量一直以每年15%的比率上升。我国的PLC研兰云芳(294404413)2制、生产、和应用也发展的很快,尤其在应用方面更为突出。PLC技术之所以高速发展,除了工业自动化的客观需要之外,主要是因为它具有很多独特的优点,较好地解决了工业领域中普遍关心的可靠、安全、灵活、经济问题。PLC可靠性高,抗干扰能力强,其平均无故障时间可达几十万个小时,之所以有这么高的可靠性,是由于它采用了一系列的硬件和软件的抗干扰措施;其次PLC编程简单、使用方便,目前大多数PLC采用的编程语言是梯形图语言,梯形图与电器控制线路相似,形象、直观,不需要掌握计算机知识,很容易被广大工程技术人员掌握;然后PLC功能完善、通用性强、设计安装简单、维护方便;最后,PLC采用了集成电路,其结构紧凑、体积小、能耗低,是实现机电一体化的理想控制设备。因此,目前PLC已广泛的应用于冶金、石油、化工、建材、机械制造、电力、汽车、轻工、环保及文化娱乐等各个行业。随着PLC性价比的不断提高,其应用领域还将不断扩大。为此本文主要研究基于PLC的步进电机控制系统,实现PLC与步进电机的一体化问题。1.2问题的提出二十一世纪的今天,电动机在工农业生产、人们日常生活中起着十分重要的作用。步进电机是最常见的一种控制电机,在各领域中得到广泛应用。步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,其优点是结构简单、运行可靠、控制方便。尤其是步距值不受电压、温度的变化的影响、误差不会长期积累的特点,给实际的应用带来了很大的方便。它广泛用于消费类产品(打印机、照相机)、工业控制(数控机床、工业机器人)、医疗器械等机电产品中。研究步进电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。为此,本文设计了一个基于PLC的步进电机控制系统,可以实现对步进电机转动速度和转动方向的高效控制。1.3设计目的及系统功能本设计的目的是以单片机为核心设计出一个步进电机控制系统。本系统采用FX2N系列PLC作为控制单元,通过键盘实现对步进电机转动方向及转动速度的控制,并且将步进电机的转动速度动态显示在LED数码管上。通过本课题,一方面我们在查阅资料的基础上,了解FX2N系列PLC控制的一些基本技术,掌握其控制系统的分析方法与实现方法,能对PLC外围电路设计进行系统学习与掌握;另一方面,通过设计步进电机控制系统的硬件电路,控制程序和相应的电路图,以此培养自己的自学和动手能力,从而为今后参加工作或进一步深造打下良好的基础。设计的步进电机控制系统有以下功能:1.步进电机的启停控制2.步进电机的正反转控制3.步进电机的加速控制4.步进电机的减速控制5.步进电机通电方式改变的控制2、PLC控制步进电机系统简介2.1PLC控制系统2.1.1PLC概述 (1)PLC的基本概念可编程控制器(ProgrammableController)是计算机家族中的一员,是为工业控制应用而设计制造的。早期的可编程控制器称作可编程逻辑控制器(ProgrammableLogicController),简称PLC,它主要用来代替继电器实现逻辑控制。随着技术的发展,这种装置的功能已经大大超过了逻辑控制的范围,因此,今天这种装置称作可编程控制器,简称PC。但是为了避免与个人计算机(PersonalComputer)的简称混淆,所以将可编程控制器简称PLC。PLC即可编程控制器(ProgrammablelogicController,是指以计算机技术为基础的新型工业控制装置。在1987年国际电工委员会(InternationalElectricalCommittee)颁布的PLC标准草案中对PLC做了如下定义:“PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。”(2)PLC的基本结构PLC实质是一种专用于工业控制的计算机,其硬件结构基本上与微型计算机相同,如图所示:a.中央处理单元(CPU)中央处理单元(CPU)是PLC的控制中枢。它按照PLC系统程序赋予的功能接收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O以及警戒定时器的状态,并能诊断用户程序中的语法错误。当PLC投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算数运算的结果送入I/O映象区或数据寄存器内。等所有的用户程序执行完毕之后,最后将I/O映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行。为了进一步提高PLC的可靠性,近年来对大型PLC还采用双CPU构成冗余系统,或采用三CPU的表决式系统。这样,即使某个CPU出现故障,整个系统仍能正常运行。b、存储器存放系统软件的存储器称为系统程序存储器。存放应用软件的存储器称为用户程序存储器。C、电源PLC的电源在整个系统中起着十分重要的作用。如果没有一个良好的、可靠的电源系统是无法正常工作的,因此PLC的制造商对电源的设计和制造也十分重视。一般交流电压波动在+10%(+15%)范围内,可以不采取其它措施而将PLC直接连接到交流电网上去(3)PLC的工作原理一.扫描技术当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段。(一)输入采样阶段在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应得单元内。输入采样结束后,转入用户程序执行和输出刷新阶段。在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。(二)用户程序执行阶段在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。即在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。(三)输出刷新阶段当扫描用户程序结束后,PLC就进入输出刷新阶段。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。这时,才是PLC的真正输出。(4)PLC的构成从结构上分,PLC分为固定式和组合式(模块式)两种。固定式PLC包括CPU板、I/O板、显示面板、内存块、电源等,这些元素组合成一个不可拆卸的整体。模块式PLC包括CPU模块、I/O模块、内存、电源模块、底板或机架,这些模块可以按照一定规则组合配置。=1\*GB3①CPU的构成CPU是PLC的核心,起神经中枢的作用,每套PLC至少有一个CPU,它按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。进入运行后,从用户程序存贮器中逐条读取指令,经分析后再按指令规定的任务产生相应的控制信号,去指挥有关的控制电路。CPU主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。内存主要用于存储程序及数据,是PLC不可缺少的组成单元。在使用者看来,不必要详细分析CPU的内部电路,但对各部分的工作机制还是应有足够的理解。CPU的控制器控制CPU工作,由它读取指令、解释指令及执行指令。但工作节奏由震荡信号控制。运算器用于进行数字或逻辑运算,在控制器指挥下工作。寄存器参与运算,并存储运算的中间结果,它也是在控制器指挥下工作。CPU速度和内存容量是PLC的重要参数,它们决定着PLC的工作速度,IO数量及软件容量等,因此限制着控制规模。=2\*GB3②I/O模块PLC与电气回路的接口,是通过输入输出部分(I/O)完成的。I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。常用的I/O分类如下:开关量:按电压水平分,有220VAC、110VAC、24VDC,按隔离方式分,有继电器隔离和晶体管隔离。模拟量:按信号类型分,有电流型(4-20mA,0-20mA)、电压(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。除了上述通用IO外,还有特殊IO模块,如热电阻、热电偶、脉冲等模块。按I/O点数确定模块规格及数量,I/O模块可多可少,但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数限制。=3\*GB3③电源模块PLC电源用于为PLC各模块的集成电路提供工作电源。同时,有的还为输入电路提供24V的工作电源。电源输入类型有:交流电源(220VAC或110VAC),直流电源(常用的为24VDC)。=4\*GB3④底板或机架大多数模块式PLC使用底板或机架,其作用是:电气上,实现各模块间的联系,使CPU能访问底板上的所有模块,机械上,实现各模块间的连接,使各模块构成一个整体。2.1.2PLC系统的其它设备1)编程设备:编程器是PLC开发应用、监测运行、检查维护不可缺少的器件,用于编程、对系统作一些设定、监控PLC及PLC所控制的系统的工作状况,但它不直接参与现场控制运行。小编程器PLC一般有手持型编程器,目前一般由计算机(运行编程软件)充当编程器。也就是我们系统的上位机。2)人机界面:最简单的人机界面是指示灯和按钮,目前液晶屏(或触摸屏)式的一体式操作员终端应用越来越广泛,由计算机(运行组态软件)充当人机界面非常普及。2.1.3PLC的通信联网依靠先进的工业网络技术可以迅速有效地收集、传送生产和管理数据。因此,网络在自动化系统集成工程中的重要性越来越显著,甚至有人提出"网络就是控制器"的观点说法。PLC具有通信联网的功能,它使PLC与PLC之间、PLC与上位计算机以及其他智能设备之间能够交换信息,形成一个统一的整体,实现分散集中控制。多数PLC具有RS-232接口,还有一些内置有支持各自通信协议的接口。PLC的通信现在主要采用通过多点接口(MPI)的数据通讯、PROFIBUS或工业以太网进行联网。2.1.4PLC控制系统的设计基本原则=1\*GB2⑴最大限度的满足被控对象的控制要求。=2\*GB2⑵在满足控制要求的前提下,力求使控制系统简单、经济、使用和维护方便。=3\*GB2⑶保证控制系统安全可靠。=4\*GB2⑷考虑到生产的发展和工艺的改进在选择PLC容量时应适当留有余量。2.1.5PLC软件系统及常用编程语言PLC软件系统由系统程序和用户程序两部分组成。系统程序包括监控程序、编译程序、诊断程序等,主要用于管理全机、将程序语言翻译成机器语言,诊断机器故障。系统软件由PLC厂家提供并已固化在EPROM中,不能直接存取和干预。用户程序是用户根据现场控制要求,用PLC的程序语言编制的应用程序(也就是逻辑控制)用来实现各种控制。STEP7是用于SIMATIC可编程逻辑控制器组态和编程的标准软件包,也就是用户程序,我们就是使用STEP7来进行硬件组态和逻辑程序编制,以及逻辑程序执行结果的在线监视。1、PLC提供的编程语言—标准语言梯形图语言也是我们最常用的一种语言,它有以下特点:1)它是一种图形语言,沿用传统控制图中的继电器触点、线圈、串联等术语和一些图形符号构成,左右的竖线称为左右母线。2)梯形图中接点(触点)只有常开和常闭,接点可以是PLC输入点接的开关也可以是PLC内部继电器的接点或内部寄存器、计数器等的状态。3)梯形图中的接点可以任意串、并联,但线圈只能并联不能串联。4)内部继电器、计数器、寄存器等均不能直接控制外部负载,只能做中间结果供CPU内部使用。5)PLC是按循环扫描事件,沿梯形图先后顺序执行,在同一扫描周期中的结果留在输出状态暂存器中所以输出点的值在用户程序中可以当做条件使用。2、语句表语言,类似于汇编语言。3、逻辑功能图语言,沿用半导体逻辑框图来表达,一般一个运算框表示一个功能左边画输入、右边画输出。2.1.6PLC的特点=1\*GB2⑴可靠性高,抗干扰能力强高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如三菱公司生产的F系列PLC平均无故障时间高达30万小时。一些使用冗余CPU的PLC的平均无故障工作时间则更长。从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。=2\*GB2⑵配套齐全,功能完善,适用性强PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。=3\*GB2⑶易学易用,深受工程技术人员欢迎PLC作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。=4\*GB2⑷系统的设计、建造工作量小,维护方便,容易改造PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。这很适合多品种、小批量的生产场合。=5\*GB2⑸体积小,重量轻,能耗低以超小型PLC为例,新近出产的品种底部尺寸小于100mm,重量小于150g,功耗仅数瓦。由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。2.1.7PLC的应用领域目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可归纳为如下几类。=1\*GB2⑴开关量的逻辑控制这是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。=2\*GB2⑵模拟量控制在工业生产过程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。为了使可编程控制器处理模拟量,必须实现模拟量(Analog)和数字量(Digital)之间的A/D转换及D/A转换。PLC厂家都生产配套的A/D和D/A转换模块,使可编程控制器用于模拟量控制。=3\*GB2⑶运动控制 PLC可以用于圆周运动或直线运动的控制。从控制机构配置来说,早期直接用于开关量I/O模块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。如可驱动步进电机或伺服电机的单轴或多轴位置控制模块。世界上各主要PLC厂家的产品几乎都有运动控制功能,广泛用于各种机械、机床、机器人、电梯等场合。=4\*GB2⑷过程控制过程控制是指对温度、压力、流量等模拟量的闭环控制。作为工业控制计算机,PLC能编制各种各样的控制算法程序,完成闭环控制。PID调节是一般闭环控制系统中用得较多的调节方法。大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块。PID处理一般是运行专用的PID子程序。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。=5\*GB2⑸数据处理现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。这些数据可以与存储在存储器中的参考值比较,完成一定的控制操作,也可以利用通信功能传送到别的智能装置,或将它们打印制表。数据处理一般用于大型控制系统,如无人控制的柔性制造系统;也可用于过程控制系统,如造纸、冶金、食品工业中的一些大型控制系统。=6\*GB2⑹通信及联网PLC通信含PLC间的通信及PLC与其它智能设备间的通信。随着计算机控制的发展,工厂自动化网络发展得很快,各PLC厂商都十分重视PLC的通信功能,纷纷推出各自的网络系统。新近生产的PLC都具有通信接口,通信非常方便。2.1.8PLC未来展望21世纪,PLC会有更大的发展。从技术上看,计算机技术的新成果会更多地应用于可编程控制器的设计和制造上,会有运算速度更快、存储容量更大、智能更强的品种出现;从产品规模上看,会进一步向超小型及超大型方向发展;从产品的配套性上看,产品的品种会更丰富、规格更齐全,完美的人机界面、完备的通信设备会更好地适应各种工业控制场合的需求;从市场上看,各国各自生产多品种产品的情况会随着国际竞争的加剧而打破,会出现少数几个品牌垄断国际市场的局面,会出现国际通用的编程语言;从网络的发展情况来看,可编程控制器和其它工业控制计算机组网构成大型的控制系统是可编程控制器技术的发展方向。目前的计算机集散控制系统DCS(DistributedControlSystem)中已有大量的可编程控制器应用。伴随着计算机网络的发展,可编程控制器作为自动化控制网络和国际通用网络的重要组成部分,将在工业及工业以外的众多领域发挥越来越大的作用。2.2步进电机2.2.1步进电机概述步进电机是一种能够将电脉冲信号转换成角位移或线位移的机电元件,它实际上是一种单相或多相同步电动机。单相步进电动机有单路电脉冲驱动,输出功率一般很小,其用途为微小功率驱动。多相步进电动机有多相方波脉冲驱动,用途很广。使用多相步进电动机时,单路电脉冲信号可先通过脉冲分配器转换为多相脉冲信号,在经功率放大后分别送入步进电动机各相绕组。每输入一个脉冲到脉冲分配器,电动机各相的通电状态就发生变化,转子会转过一定的角度(称为步距角)。正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。2.2.2步进电机的特性步进电机转动使用的是脉冲信号,而脉冲是数字信号,这恰是计算机所擅长处理的数据类型。从20世纪80年代开始开发出了专用的IC驱动电路,今天,在打印机、磁盘器等的OA装置的位置控制中,步进电机都是不可缺少的组成部分之一。总体上说,步进电机有如下优点:=1\*GB2⑴不需要反馈,控制简单。2.与微机的连接、速度控制(启动、停止和反转)及驱动电路的设计比较简单。3.没有角累积误差。4.停止时也可保持转距。5.没有转向器等机械部分,不需要保养,故造价较低。6.即使没有传感器,也能精确定位。7.根椐给定的脉冲周期,能够以任意速度转动。但是,这种电机也有自身的缺点。8.难以获得较大的转矩9、不宜用作高速转动10.在体积重量方面没有优势,能源利用率低。11.超过负载时会破坏同步,高速工作时会发出振动和噪声。2.2.3与直流电机的比较输出或输入为直流电能的旋转电机,称为直流电机,它是能实现直流电能和机械能互相转换的。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。在此我们只讨论直流电动机。(1)直流电动机的分类直流电机的励磁方式是指对励磁绕组如何供电、产生励磁磁通势而建立主磁场的问题。根据励磁方式的不同,直流电机可分为下列几种类型:a.他励直流电机励磁绕组与电枢绕组无联接关系,而由其他直流电源对励磁绕组供电的直流电机称为他励直流电机,永磁直流电机也可看作他励直流电机。b.并励直流电机并励直流电机的励磁绕组与电枢绕组相并联。作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组与电枢共用同一电源,从性能上讲与他励直流电动机相同。c.串励直流电机串励直流电机的励磁绕组与电枢绕组串联后,再接于直流电源。这种直流电机的励磁电流就是电枢电流。d.复励直流电机复励直流电机有并励和串励两个励磁绕组。若串励绕组产生的磁通势与并励绕组产生的磁通势方向相同称为积复励。若两个磁通势方向相反,则称为差复励。=2\*GB2⑵直流电动机的特点a.调速性能好所谓“调速性能”,是指电动机在一定负载的条件下,根据需要,人为地改变电动机的转速。直流电动机可以在重负载条件下,实现均匀、平滑的无级调速,而且调速范围较宽。b.起动力矩大可以均匀而经济地实现转速调节。因此,凡是在重负载下起动或要求均匀调节转速的机械,例如大型可逆轧钢机、卷扬机、电力机车、电车等,都用直流电动机拖动。c.可逆运行当直流电动机驱动电枢绕组在主磁极N、S之间旋转时,电枢绕组上感生出电动势,经电刷、换向器装置整流为直流后,引向外部负载(或电网),对外供电,此时直流电动机可作为直流发电机运行。=3\*GB2⑶直流电动机的工作原理大致应用了“通电导体在磁场中受力的作用”的原理,励磁线圈两个端线同有相反方向的电流,使整个线圈产生绕轴的扭力,使线圈转动。要使电枢受到一个方向不变的电转矩,关键在于:当线圈边在不同极性的磁极下,如何将流过线圈中的电流方向及时地加以变换,即进行所谓“换向”。为此必须增添一个叫做换向器的装置,换向器配合电刷可保证每个极下线圈边中电流始终是一个方向,就可以使电动机能连续的旋转,这就是直流电动机的工作原理。=4\*GB2⑷直流电动机的控制a.转动方向控制转动方向控制有两种方法:1、改变磁场方向;2、改变电流方向(即改变电源的正负极)。b.转速控制直流电动机转速n=(U-IR)/Kφ。其中U为电枢端电压,I为电枢电流,R为电枢电路总电阻,φ为每极磁通量,K为电动机结构参数。直流电机转速控制可分为励磁控制法与电枢电压控制法。励磁控制法是控制磁通,其控制功率小,低速时受到磁饱和限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大动态响应较差,所以这种控制方法用得很少。大多数应用场合都使用电枢电压控制法。随着电力电子技术的进步,改变电枢电压可通过多种途径实现,其中PWM(脉宽调制)便是常用的改变电枢电压的一种调速方法。PWM调速控制的基本原理是按一个固定频率来接通和断开电源,并根据需要改变一个周期内接通和断开的时间比(占空比)来改变直流电机电枢上电压的"占空比",从而改变平均电压,控制电机的转速。在脉宽调速系统中,当电机通电时其速度增加,电机断电时其速度减低。只要按照一定的规律改变通、断电的时间,即可控制电机转速。而且采用PWM技术构成的无级调速系统.启停时对直流系统无冲击,并且具有启动功耗小、运行稳定的特点。设电机始终接通电源时,电机转速最大为Vmax,且设占空比为D=t/T,则电机的平均速度Vd为:Vd=VmaxD。由公式可知,当改变占空比D=t/T时,就可以得到不同的电机平均速度Vd,从而达到调速的目的。严格地讲,平均速度与占空比D并不是严格的线性关系,在一般的应用中,可将其近似地看成线性关系。在直流电机驱动控制电路中,PWM信号由外部控制电路提供,并经高速光电隔离电路、电机驱动逻辑与放大电路后,驱动H桥下臂MOSFET的开关来改变直流电机电枢上平均电压,从而控制电机的转速,实现直流电机PWM调速。2.2.4步进电机的种类目前常用的步进电机有三类:1、反应式步进电动机(VR)。采用高导磁材料构成齿状转子和定子,其结构简单,生产成本低,步距角可以做的相当小,但动态性能相对较差。2、永磁式步进电动机(PM)。转子采用多磁极的圆筒形的永磁铁,在其外侧配置齿状定子。用转子和定子之间的吸引和排斥力产生转动,转动步的角度一般是7.50。它的出力大,动态性能好;但步距角一般比较大。3、混合步进电动机(HB)。这是PM和VR的复合产品,其转子采用齿状的稀土永磁材料,定子则为齿状的突起结构。此类电机综合了反应式和永磁式两者的优点,步距角小,出力大,动态性能好,是性能较好的一类步进电动机,在计算机相关的设备中多用此类电机。2.2.5反应式步进电机的控制反应式步进电机,是一种传统的步进电机,由磁性转子铁芯通过与由定子产生的脉冲电磁场相互作用而产生转动。反应式步进电机工作原理比较简单,转子上均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。市场上一般以二、三、四、五相的反应式步进机居多。应用领域:反应式步进电机主要应用于计算机外部设备、摄影系统、光电组合装置、阀门控制、核反应堆、银行终端、数控机床、自动绕线机、电子钟表及医疗设备等领域中。图2-2四相反应式步进电动机的结构图2-2是一台四相反应式步进电机的结构示意图。定子铁心由硅钢片叠成,定子上有8个均匀分布的磁极,每个磁极上又有若干小齿(本例为5个)。各个磁极上套有线圈,径向相对的两个磁极上的线圈是一相。转子也是由硅钢片叠成的,若干小齿(本例为50个)在圆周上均匀分布,但转子上没有绕组。根据工作要求,定子小齿的齿距必须等于转子小齿的齿距,且转子的齿数有一定限制。定义每个小齿所占有的角度为齿距角:………………(2-1)式中为齿距角。为转子小齿数。定子一个极距所对的转子小齿数为:……………………(2-2)式中m为相数。设电机为四相四拍通电方式。当A相控制绕组通电时,产生了沿A-A’极轴方向的磁通,由于磁通力图通过磁阻最小路径,使转子的作用而转动,直到转子磁轴线和定子磁极A-A’上的磁轴线对齐为止。因为转子共有50个齿极,每个齿距角,定子一个极距所对的转子齿数为,不是整数,因此当A-A’极下的定、转子齿轴线对齐时,相邻的两对磁极B-B’和D-D’极下的齿和转子齿必然错开1/4齿距角,即。这时,各相磁极的定子齿与转子齿的相对位置如图2-3所示。如果断开A相而接通B相,产生沿B-B’极轴线方向的磁通,同样在反应转矩的作用下,转子按顺时针方向转过,是转子齿轴线和定子磁极B-B’下的齿轴线对齐。这时,A-A’和C-C’极下的齿与转子齿又错开。以此类推,控制绕组按A→B→C→D→A…的顺序循环通电时,转子就按顺时针方向一步一步连续地转动起来。没换接一次绕组,转子转过1/4齿距角。0图2-3A显然,如果要使步进电机反转,只要改变通电顺序,即按A→D→C→B→A…的顺序循环通电时,则转子便按逆时针方向一步一步地转动起来,步距角同样为1/4齿距角,即。如果运行方式改为四相八拍,通电方式为A→AB→B→BC→C→CD→D→DA→A…,即单相通电和两相通电相间时,步距角为四相四拍运行时的一半,即。当步进电机运行方式为四相双四拍时,当AB→BC→CD→DA→AB…方式通电时,步距角与四相单四拍运行时一样,为1/4齿距角,即。由此可见,步进电机的步距角由转子齿数、定子相数m和通电方式所决定,即:……………(2-3)式中C——状态系数,采用单双通电方式时C=2,采用单或双通电方式时C=1。N——拍数。既然每个控制脉冲使步进电机转过一个,电机实际角位移应为:式中N’——控制脉冲的个数。若步进电机所加的通电脉冲频率为f,则其转速为:……………………(2-4)由于在一个通电循环内控制脉冲的个数为N(拍数),而每相绕组的供电脉冲个数却只有一个,因此定子相绕组的供电频率为:可见,步进电动机在不失步、不丢步的前提下,其转速和转角与电压、负载、湿度等因素无关,因而步进电机可直接采用开环,简化控制系统。2.3本设计所用步进电机本设计中所用的是三相反应式步进电动机,其工作原理与上述四相步进电动机相同。其转子小齿为80个,因此齿距角。其采用三种运行方式,分别为“三相单三拍”、“三相单双六拍”和“三相双三拍”。三相单三拍的通电顺序为A→B→C→A…,不断接通与断开控制绕组,转子就按顺时针方向一步一步地转动起来,每换接一次绕组,转子转过1/3齿距角,即。如果要使电动机反转,只要改变通电顺序,即按A→C→B→A…顺序循环通电。当运行方式改为三相单双六拍时,通电方式为A→AB→B→BC→C→CA→A…,即单相通电与两相通电相间,步距角为三相单三相运行时的一半,即。其三相绕组的波形图如2-4所示。当步进电机反转时,其通电方式应该为A→AC→C→CB→B→BA→A…,其步进角与正转相同。当步进电机再改为三相双三拍运行时,其通电方式为AB→BC→CA→AB…,步距角与三相单三拍时一样,为1/3齿距角,即。当其反转时,通电方式改变为AB→AC→CB→BA…。图2-4步进电机两相绕组的电流脉冲波形3、硬件电路设计3.1硬件设计思路步进电机控制系统共分为三个模块:按键控制模块、数码显示模块、步进电机驱动模块。键盘控制模块包括启动键、停止键、点动控制键、速度控制键、方向控制键和步进电机通电方式改变的控制。其中启动键接于PLC的X0端口;键接于PLC的X1端口;点动控制键接于PLC的X2端口,实现对步进电机的点动控制;而速度控制键分为4个不同的速度等级,有小到大分别接于PLC的X3、X4、X5和X6端口,实现对步进电机在不同转速下运行的控制要求;方向控制键接于PLC的X7端口,实现对步进电机正反转的控制;通电方式改变按钮接于PLC的X8端口,实现对步进电机通电方式改变的控制。数码显示模块采用共阳极数码管来动态显示步进电机的实际转动速度。利用三极管为数码管的com端提供高电平。PLC的Y3-Y6端口提供数码管的段选信号,PLC的Y7-Y10端口控制数码管的位选信号。步进电机驱动模块采用恒频斩波细分驱动电路,通过接收PLC发出的脉冲信号来控制步进电机完成各种操作。由于本设计中采用三相反应式步进电机,因此需要采用三支完全相同的驱动电路分别控制电机两相绕组的电流,而由PLC的Y0、Y1和Y3端口分别提供控制两相绕组的脉冲信号。3.2总体设计框图总设计图如图2-1所示。图3-1总体设计框图说明如下:1.PLC接受键盘信息,改变系统内部变量值。2.PLC输出脉冲信号,控制步进电机转动。3.PLC根据步进电机实际转动值,控制数码管显示。3.3外围电路设计及分析3.3.1键盘控制电路键盘在单片机应用系统中能实现向PLC输入数据、传送命令等功能,是人工干预单片机的主要手段。键盘实质是一组按键开关的集合。键盘所用开关为机械弹性开关,利用了机械触点的合、断作用。机械开关应接到PLC的开关量输入接口进行开关控制,PLC的开关量输入接口的作用是把现场的开关量信号变成可编程控制器内部处理的标准信号。开关量输入接口按可接纳的外信号电源的类型不同可分为直流输入单元和交流输入单元,如图2-5、图2-6所示。图3-2直流输入单元图3-3交流输入单元从图中可以看出,输入接口中都有滤波电路及耦合电路。滤波有抗干扰的作用,耦合有抗干扰及产生标准信号的作用。图中输入口的电源部分都画在了输入口外(虚线框外),这是分体式输入口的画法,在一般单元式可编程控制器中,输入口都使用可编程本机的直流电源供电,不再需要外接电源。本设计中采用的是直流输入单元,即如图2-8所示。一个电压信号在机械触点的断开、闭合过程中,都会产生抖动,一般为5—10ms;两次抖动之间为稳定的闭合状态,时间由按键动作所决定;第一次抖动前和第二次抖动后为断开状态。按键的闭合与否,反映在输出电压上就是呈现出高电平或低电平。通过对输出电平的高低状态的检测,便可确认按键按下与否。在本设计中,高电平表示按键断开,低电平表示按键闭合状体。并且,为了能直观形象的表示按键闭合与否,还为每个按键相应增加了发光二极管,按键断开时,发光二极管灭,当有键闭合时,相应的发光二极管变亮。为了确保单片机对一次按键动作只确认一次按键,必须消除抖动的影响。消除按键抖动通常采用硬件、软件两种方法。由于硬件消抖电路设计复杂,本设计中没有采用,在此不再详细叙述;软件消抖适合按键较多的情况,方便简单。其原理是在第一次检测到有键按下时,执行一段延时10ms的子程序后在确认该键电平是否仍图3-4按键接线图保持闭合状态电平,如果保持闭合状态电平则确认为真正有键按下,从而消除了抖动的影响。因此本设计中采用了这种方式来消除抖动,其原理将在下一章软件设计中体现出来,其硬件原理图如图2-7所示:其中SB0是启动按钮,SB1为关闭按钮,SB2为低速点动控制按钮,SB3为低速持续运转控制按钮,SB4为中速持续运转控制按钮,SB5为高速运转控制按钮,SB6为超高速运转控制按钮.SB7为正反转切换按钮,SB8为控制步进电机通电方式在三相单拍、三相单双拍和三相三拍之间切换。3.3.2步进电动机驱动电路步进电机的功率放大电路的种类很多。按照电流流过的方向是单向还是双向的,可以把功率放大电路分为双极性驱动电路和单极性驱动电路两类。单极性驱动电路适用于反应式步进电机,而双极性驱动电路适用于永磁式步进电动机和混合式步进电动机。驱动电路的功率器件可以选用功率晶体管、功率场效应管(MOSFET)或IGBT,还可以选用集成功率驱动模块。=1\*GB2⑴单电压驱动但电压驱动是指电动机绕组在工作时,只用一个电压电源对绕组供电。单电压驱动如图2-8所示图3-5单电压驱动电路功率晶体管T用作开头,L是电机一相绕组的电感,电源电压一般选择在10V-100V左右。限流电阻R1决定了时间常数,R1在工作中要消耗一定的能量,所以这个电路损耗大、放率低,一般只用于小功率步进电动机的驱动。=2\*GB2⑵双电压驱动

用提高电压的方法可以使绕组中的电流上升波形变陡,这样就产生了双电压驱动。双电压驱动有两种方式:双电压法和高低压法=1\*GB3①双电压法双电压法的基本思路是:在低频段使用较低的电压驱动,在高频段使用较高的电压驱动。其电路原理如图2-9所示。图3-6双电压驱动电路当电动机工作在低频时,给T1低电平,使T1关断。这时,电动机的绕组由低电压VL供电,控制脉冲通过T2使绕组得到低压脉冲电源。当电动机工作在高频时,给T1高电平,使T1打开。这时二极管D2反响截止,切断低电压电源VL,电动机绕组由高电压VH供电,使控制脉冲通过T2使绕组得到高压脉冲电源。这种驱动方法保证了低频段仍然具有单电压驱动的特点,在高频段具有良好的高频性能,但仍没摆脱单压驱动的弱点,在限流电阻R上仍然会产生损耗和发热。=2\*GB3②高低压法高低压法的基本思路是:不论电动机工作的频率如何,在绕组通电的开始用高压供电,是绕组中电流迅速上升,而后用低压来维持绕组中的电流。高低压驱动电路的原理如图2-10所示,尽管看起来与双电压法电路非常相似,但它们的原理有很大差别。图3-7高低压驱动电路高压开关管T1的输入脉冲uH与低压开关管T2的输入脉冲uL同时起步,但脉宽要窄得多。两个脉冲同时使开关管T1、T2导通,使高电压VH为电动机绕组供电。这使得绕组中电流i快速上升,电流波形的前沿很陡,如图9-7所示电流波形。当脉冲UH降为低电平时,高压开关管T1截止,高电压被切断,使电压VL通过二极管D2为绕组继续供电,由于绕组电阻小,回路中又没有串联电阻,所以低电压只需数伏就可以为绕组提供提供较大电流。高低压驱动法是目前普遍应用的一种方法。由于这种驱动在低频时电流有较大的上冲,电动机低频噪声较大,低频共振现象存在,使用时要注意。本设计中采用的驱动电路是斩波恒流驱动电路,斩波恒流驱动电路时性能较好的、目前使用较多的一种驱动方式。其基本思想是:无论电机是在锁定状态还是在低频段或高频段运行,均使导通相的绕组的电流保持额定值。图2-11是斩波恒流驱动电路的原理图。相绕组的通断由开关管VT1和VT2共同控制,VT2的发射极接一个小电阻R,电动机绕组的电流经这个电阻到地,小电阻的压降与电动机绕组的电流成正比,所以这个电阻式电流采样电阻。当Ui为高电平时,VT1和VT2两个开关管均导通,电源向绕组供电。由于绕组电感的作用,R上的电压逐渐升高,当超过给定电压Ua的值时,比较器的输出低电平,使与门输出低电平,VT1截止,电源被切断,绕组电流经VT2、R、VD2续流,采样电阻R的端电压随之下降。当采样电阻R上的电压小于给定电压Ua时,比较器输出高电平,与门也输出高电平,VT1重新导通,电源又开始向绕组供电。如此反复,绕组的电流叫稳定在由给定电压所决定的数值上。当控制脉冲Ui变为低电平时,VT1和VT2两个开关管均截止,绕组中的电流经二极管VD1、电源和二极管VD2放电,电流迅速下降。控制脉冲Ui、VT1的基极电位Ub1及绕组电流Id饿波形如图2-11所示。图3-8斩波恒流驱动电路的原理图图3-9斩波恒流控制的电流波形在VT2导通期间内,电源以脉冲式供电,所以这种驱动电路具有较高的效率。由于在斩波驱动下绕组电流恒定,电机的输出转矩均匀。这种驱动电路的另一个优点是能够有效地抑制共振,因为电机共振的基本原因是能量过剩,而斩波恒流驱动的输入能量是随着绕组电流的变化自动调节的,可以有效的防止能量积聚。但是,由于电流波形为锯齿形,这种驱动方式会产生较大的电磁噪声。2.6.3LED数码显示电路 发光二极管LED是一种通电后能发光的半导体器件,其导电性质与普通二极管类似。LED数码显示器就是由发光二极管组合而成的1种新型显示器件。在单片机系统中应用非常普遍。LED数码显示器是1种由LED发光二极管组合显示字符的显示器件。它使用了8个LED发光二极管,其中7个用于显示字符,1个用于显示小数点。LED数码显示器有两种连接方法:(1)共阳极接法。把发光二极管的阳极连在一起构成公共阳极,使用时公共阳极接+5V,每个发光二极管的阴极通过电阻与输入端相连。当阴极端输入低电平时,段发光二极管就导通点亮,而输入高电平时则不点亮。(2)共阴极接法。把发光二极管的阴极连在一起构成公共阴极,使用时公共阴极接地。每个发光二极管的阳极通过电阻与输入端相连。当阳极端输入高电平时,段发光二极管就导通点亮,而输入低电平时则不点亮。在本设计中所采用的是共阳极LED数码显示器,其内部结构如图2-12所示:图3-10LED数码管结构图可编程控制器的晶体管输出电路有漏极输出和源极输出两种,图2-13(a)为负逻辑,图2-13(b)为正逻辑,7段显示器的数据输入和选通信号也有正负逻辑之分。若数据的输入以高电平为“1”,则为正逻辑;反之为负逻辑。选通信号在高电平时锁存数据,则为正逻辑;反之为负逻辑。(a)(b)图3-11集电极输出与反射极输出在本设计中,数码显示电路通过采用共阳极数码管来动态显示步进电机的实际转动速度,利用三极管为数码管的com端提供高电平。PLC的Y2-Y5端口提供数码管的段选信号,PLC的Y6-Y9端口控制数码管的位选信号。PLC的晶体管输出电路采用源极输出,其原理图如图2-14:图3-12数码显示电路3.4步进电机控制系统电路图通过上述对步进电机控制系统设计与分析,步进电机控制系统总体设计电路如图2-14所示:图3-13步进电机控制系统总体设计电路图4、软件设计4.1可编程控制器软件设计原理4.1.1可编程序控制器的工作原理可编程序控制器有两种基本的工作状态,即运行(RUN)状态与停止(STOP)状态。在运行状态,可编程控制器通过执行反映控制要求的用户程序来实现控制功能。为了使可编程序控制器的输出及时地响应随时可能变化的输入信号,用户程序不是只执行一次,而是反复不断地重复执行,直至可编程序控制器停机或切换到STOP工作状态。除了执行用户程序之外,在每次循环过程中,可编程序控制器还要完成,内部处理、通信处理等工作,一次循环可分为5个阶段(见左上图)。可编程序控制器的这种周而复始的循环工作方式称为扫描工作方式。由于计算机执行指令速度极高,从外部输入-输出关系来看,处理过程似乎是同时完成的。在内部处理联合阶段。可编程序控制器检查CPU模块内部的硬件是否正常,将监控定时器复位,以及完成一些别的内部工作。在通信服务阶段,可编程序控制器与别的带微处理器的智能装置通信,响应编程器键入的命令,更新编程器的显示内容。当可编程序控制器处于停止(STOP)状态时,只执行以上的操作。可编程序控制器处于(RUN)状态时,还要完成另外3个阶段的操作(见右图),图中仅画出了与用户程序执行过程有关的3个阶段。4.1.2扫描周期可编程序控制器在RUN工作状态时,执行一次上图所示的扫描操作所需的时间称为扫描周期,其典型值为1~100ms。指令执行所需的时间与用户程序的长短、指令的种类和CPU执行指令的速度有很大的关系。当用户程序较长时,指令执行时间在扫描周期中占相当大的比例。不过严格地来说扫描周期还包括自诊断、通信等。如图4-1所示。第第(N-1)个扫描周期输出刷新第(N+1)个扫描周期输入采样第N个扫描周期输入采样输出刷新用户程序执行图4.1PLC的扫描运行方式(1)输入采样阶段在输入采样阶段,PLC以扫描方式依次读入所有的数据和状态它们存入I/O映象区的相应单元内。输入采样结束后,转入用户程序行和输出刷新阶段。在这两个阶段中,即使输入数据和状态发生变化I/O映象区的相应单元的数据和状态也不会改变。所以输入如果是脉冲信号,它的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。(2)用户程序执行阶段在用户程序执行阶段,PLC的CPU总是由上而下,从左到右的顺序依次的扫描梯形图。并对控制线路进行逻辑运算,并以此刷新该逻辑线圈或输出线圈在系统RAM存储区中对应位的状态。或者确定是否要执行该梯形图所规定的特殊功能指令。例如:算术运算、数据处理、数据传达等。(3)输出刷新阶段在输出刷新阶段,CPU按照I/O映象区内对应的数据和状态刷新所有的数据锁存电路,再经输出电路驱动响应的外设。这时才是PLC真正的输出。4.2PLC的选型为了能够更好的选型,工程设计选型和估算时,应详细分析工艺过程的特点、控制要求,明确控制任务和范围确定所需的操作和动作,然后根据控制要求,估算输入输出点数、所需存储器容量、确定PLC的功能、外部设备特性等,最后选择有较高性能价格比的PLC和设计相应的控制系统。4.2.1输入输出(I/O)点数的估算I/O点数估算时应考虑适当的余量,通常根据统计的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论