2023届青海省西宁市第二十一中学中考一模数学试题含解析_第1页
2023届青海省西宁市第二十一中学中考一模数学试题含解析_第2页
2023届青海省西宁市第二十一中学中考一模数学试题含解析_第3页
2023届青海省西宁市第二十一中学中考一模数学试题含解析_第4页
2023届青海省西宁市第二十一中学中考一模数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30° B.50° C.40° D.70°2.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣) B.(﹣) C.(﹣) D.(﹣)3.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.244.如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为()A.60° B.65° C.70° D.75°5.如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20B.16C.12D.86.已知3a﹣2b=1,则代数式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣37.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A. B. C. D.8.如图,,,则的大小是A. B. C. D.9.已知点,与点关于轴对称的点的坐标是()A. B. C. D.10.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过(

)A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共7小题,每小题3分,满分21分)11.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)AC的长等于_____;(Ⅱ)在线段AC上有一点D,满足AB2=AD•AC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_____.12.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:求作:的内切圆.小明的作法如下:如图2,作,的平分线BE和CF,两线相交于点O;过点O作,垂足为点D;

点O为圆心,OD长为半径作所以,即为所求作的圆.请回答:该尺规作图的依据是______.13.已知关于x的不等式组只有四个整数解,则实数a的取值范是______.14.如图,点P(3a,a)是反比例函(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.15.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P.若OP=,则k的值为________.16.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.17.函数y=中自变量x的取值范围是___________.三、解答题(共7小题,满分69分)18.(10分)小马虎做一道数学题,“已知两个多项式,,试求.”其中多项式的二次项系数印刷不清楚.小马虎看答案以后知道,请你替小马虎求出系数“”;在(1)的基础上,小马虎已经将多项式正确求出,老师又给出了一个多项式,要求小马虎求出的结果.小马虎在求解时,误把“”看成“”,结果求出的答案为.请你替小马虎求出“”的正确答案.19.(5分)对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命题会正确吗?(1)请判断下列命题的真假,并在相应命题后面的括号内填上“真”或“假”.①等腰三角形两腰上的中线相等;②等腰三角形两底角的角平分线相等;③有两条角平分线相等的三角形是等腰三角形;(2)请写出“等腰三角形两腰上的中线相等”的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,请举出反例.20.(8分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?21.(10分)如图,M是平行四边形ABCD的对角线上的一点,射线AM与BC交于点F,与DC的延长线交于点H.(1)求证:AM2=MF.MH(2)若BC2=BD.DM,求证:∠AMB=∠ADC.22.(10分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.23.(12分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求O的半径.24.(14分)平面直角坐标系xOy(如图),抛物线y=﹣x2+2mx+3m2(m>0)与x轴交于点A、B(点A在点B左侧),与y轴交于点C,顶点为D,对称轴为直线l,过点C作直线l的垂线,垂足为点E,联结DC、BC.(1)当点C(0,3)时,①求这条抛物线的表达式和顶点坐标;②求证:∠DCE=∠BCE;(2)当CB平分∠DCO时,求m的值.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】

利用三角形内角和求∠B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.2、A【解析】

直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,则△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(-,).故选A.【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.3、A【解析】

解:∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC-BF=10-6=4,∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故选A.4、C【解析】

由等腰三角形的性质可求∠ACD=70°,由平行线的性质可求解.【详解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故选:C.【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题.5、B【解析】

首先证明:OE=12【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=12∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.6、B【解析】

先变形,再整体代入,即可求出答案.【详解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故选:B.【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键.7、B【解析】

根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.【详解】解:∵矩形OABC,∴CB∥x轴,AB∥y轴.∵点B坐标为(6,1),∴D的横坐标为6,E的纵坐标为1.∵D,E在反比例函数的图象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.∵B,B′关于ED对称,∴BF=B′F,BB′⊥ED,∴BF•ED=BE•BD,即BF=3×,∴BF=,∴BB′=.设EG=x,则BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故选B.【点睛】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.8、D【解析】

依据,即可得到,再根据,即可得到.【详解】解:如图,,,又,,故选:D.【点睛】本题主要考查了平行线的性质,两直线平行,同位角相等.9、C【解析】

根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】解:点,与点关于轴对称的点的坐标是,

故选:C.【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.10、D【解析】

根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决.【详解】∵直线y=ax+b(a≠0)经过第一,二,四象限,∴a<0,b>0,∴直线y=bx-a经过第一、二、三象限,不经过第四象限,故选D.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.二、填空题(共7小题,每小题3分,满分21分)11、5见解析.【解析】

(1)由勾股定理即可求解;(2)寻找格点M和N,构建与△ABC全等的△AMN,易证MN⊥AC,从而得到MN与AC的交点即为所求D点.【详解】(1)AC=;(2)如图,连接格点M和N,由图可知:AB=AM=4,BC=AN=,AC=MN=,∴△ABC≌△MAN,∴∠AMN=∠BAC,∴∠MAD+∠CAB=∠MAD+∠AMN=90°,∴MN⊥AC,易解得△MAN以MN为底时的高为,∵AB2=AD•AC,∴AD=AB2÷AC=,综上可知,MN与AC的交点即为所求D点.【点睛】本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D点的思路.12、到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【解析】

根据三角形的内切圆,三角形的内心的定义,角平分线的性质即可解答.【详解】解:该尺规作图的依据是到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线;故答案为到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【点睛】此题主要考查了复杂作图,三角形的内切圆与内心,关键是掌握角平分线的性质.13、-3<a≤-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a的范围.详解:由不等式①解得:由不等式②移项合并得:−2x>−4,解得:x<2,∴原不等式组的解集为由不等式组只有四个整数解,即为1,0,−1,−2,可得出实数a的范围为故答案为点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数的取值范围.14、y=【解析】设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:r=.∵点P(3a,a)是反比例函y=(k>0)与O的一个交点,∴3a2=k.∴a2==4.∴k=3×4=12,则反比例函数的解析式是:y=.故答案是:y=.点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键.15、1【解析】设点P(m,m+2),∵OP=,∴=,解得m1=1,m2=﹣1(不合题意舍去),∴点P(1,1),∴1=,解得k=1.点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P的坐标是解题的关键.16、;【解析】

设第一天走了x里,则第二天走了里,第三天走了里…第六天走了里,根据总路程为378里列出方程可得答案.【详解】解:设第一天走了x里,则第二天走了里,第三天走了里…第六天走了里,依题意得:,故答案:.【点睛】本题主要考查由实际问题抽象出一元一次方程.17、x≥﹣且x≠1【解析】

试题解析:根据题意得:解得:x≥﹣且x≠1.故答案为:x≥﹣且x≠1.三、解答题(共7小题,满分69分)18、(1)-3;(2)“A-C”的正确答案为-7x2-2x+2.【解析】

(1)根据整式加减法则可求出二次项系数;(2)表示出多项式,然后根据的结果求出多项式,计算即可求出答案.【详解】(1)由题意得,,A+2B=(4+)+2-8,4+=1,=-3,即系数为-3.(2)A+C=,且A=,C=4,AC=【点睛】本题主要考查了多项式加减运算,熟练掌握运算法则是解题关键.19、(1)①真;②真;③真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;见解析.【解析】

(1)根据命题的真假判断即可;(2)根据全等三角形的判定和性质进行证明即可.【详解】(1)①等腰三角形两腰上的中线相等是真命题;②等腰三角形两底角的角平分线相等是真命题;③有两条角平分线相等的三角形是等腰三角形是真命题;故答案为真;真;真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;已知:如图,△ABC中,BD,CE分别是AC,BC边上的中线,且BD=CE,求证:△ABC是等腰三角形;证明:连接DE,过点D作DF∥EC,交BC的延长线于点F,∵BD,CE分别是AC,BC边上的中线,∴DE是△ABC的中位线,∴DE∥BC,∵DF∥EC,∴四边形DECF是平行四边形,∴EC=DF,∵BD=CE,∴DF=BD,∴∠DBF=∠DFB,∵DF∥EC,∴∠F=∠ECB,∴∠ECB=∠DBC,在△DBC与△ECB中,∴△DBC≌△ECB,∴EB=DC,∴AB=AC,∴△ABC是等腰三角形.【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质;证明的步骤是:先根据题意画出图形,再根据图形写出已知和求证,最后写出证明过程.20、(1)结果见解析;(2)不公平,理由见解析.【解析】判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平.21、(1)证明见解析;(2)证明见解析.【解析】

(1)由于AD∥BC,AB∥CD,通过三角形相似,找到分别于,都相等的比,把比例式变形为等积式,问题得证.(2)推出∽,再结合,可证得答案.【详解】(1)证明:∵四边形是平行四边形,∴,,∴,,∴即.(2)∵四边形是平行四边形,∴,又∵,∴即,又∵,∴∽,∴,∵,∴,∵,∴.【点睛】本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.22、(1)(2)(-6,0)或(-2,0).【解析】分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t的方程,则可求得P点坐标.详解:(1)把A点坐标代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=;(2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面积为3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.23、(1)证明见解析;(2).【解析】试题分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.考点:切线的性质.24、(1)y=﹣x2+2x+3;D(1,4);(2)证明见解析;(3)m=;【解析】

(1)①把C点坐标代入y=﹣x2+2mx+3m2可求出m的值,从而得到抛物线解析式,然后把一般式配成顶点式得到D点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论