版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
StudyonthetransmissionandreflectionofstresswavesYexueLia,b,ZhemingZhuc,n,BixiongLic,JianhuiDenga,HeCollegeofWaterResource&Hydropower,SichuanUniversity,Chengdu610065,DepartmentofCivilEngineering,XiangfanUniversity,Xiangfan,Hubei441053,CollegeofArchitectureandEnvironment,SichuanUniversity,Chengdu61005,:Inordertoinvestigatethetransmissionandreflectionofstresswavesacrossjoints,afractaldamagejointmodelisdevelopedbasedonfractaldamagetheory,andtheyticalsolutionforthecoefficientsoftransmissionandreflectionofstresswavesacrossjointsisderivedfromthefractaldamagejointmodel.Thefractalgeometricalcharacteristicsofjointsurfacesareinvestigatedbyusinglaserprofilometertoscanthejointsurfaces.ThedynamicexperimentsbyusingSplitHopkinsonPressureBar(SHPB)forrockspecimenswithsinglejointareconductedtoconfirmtheyticalsolutionofthecoefficientsoftransmissionandreflection.TheSHPBexperimentalresultsofthecoefficientsagreewellwiththeyticalsolution.:StresswaveTransmissionandreflectionJointFractaldimensionDamageAsiswellknown,rocksusuallycontaindefectsordiscontinuities,suchasjoints,cracks,poresandfaults.Thesediscontinuitiesweakenrockmaterialstrengthandstabilityastheyaresubjectedtodynamicloads,suchasblastsandearthquakes,therefore,thestabilityofgeotechnicalstructures,suchastunnels,subways,dams,etc.,wouldbecontrolledbythesediscontinuities.Thedesignersofsuchgeotechnicalstructuresarerequiredtohavetheknowledgeofwavepropagationacrossjoints,andtherefore,thecorrespondingstudyontransmissionandreflectionofwavesacrossjointsissignificant.Currently,alargenumberoftheoretical,empiricalandnumericalmodelsconcerningthegeometricalandmechanicalpropertiesofjointshavebeenestablishedtostudythejointeffectsonwavepropagationandattenuation[1–8].However,ourunderstandingoftheprocessoftransmissionandreflectionofstresswavescrossingjointsisfarfromcomplete,asjointsarestillcomplexforus.Whenstresswavesencounterjoints,theywillsufferpartialreflectionandtransmission.Thecharacteristicsofreflectionandtransmissiondependonmanyfactors,suchas,jointspacing,jointorientation[9],jointwidth,jointroughness,jointstiffness,fillingmaterialinsidejoints[10,11],liquidsaturation,etc.Fortheissueofwavepropagationacrossjoints,CaiandZhao[4]haveinvestigatedtheeffectsofmultipleparallelfracturesonapparentattenuationofstresswaveinrockmasses.Fanetal.[6]havepresentedthestudyonwavepropagationandwaveattenuationinjointedrockmassesbyusingdiscreteelementmethod(DEM).GulyayevandIvanchenko[8]haveinvestigatedtheproblemaboutdynamicinctionofdiscontinuouswaveswithbetweenanisotropicelasticmedia.Perak-Nolte[12]andZhaoandCai[13]haveinvestigatedstresswavepropagationacrosslineardeformationjoints,andobtainedthecoefficientsofstresswavetransmissionandreflection.Wangetal.[14]havederivedthecoefficientsoftransmissionandreflectionofstresswavecrossingnon-linearlydeformationaljointsbyusingtherockdamagemechanicstheory[15]andstrainequivalenthypothesis,andtheresultofthecoefficientsagreedwellwiththenumericalresultspresentedbyZhaoandCai[13].Kahraman[16]hassimulatedjointsurfaceroughnessandinvestigatedtherelationbetweentheroughnessofjointsurfacesandtheparticlevelocityofstresswaves.Thesurfacesofnaturaljointsdevelopedduringalongtimeofgeologicaldigenesisarenotsmooth,andactuallytheyareveryrough.AcoefficientofjointroughnessJRC(jointroughnesscoefficient),proposedbyBamford[17]in1978,somehowcanexpresstheeffectofjointroughnessonstresswavepropagation.However,JRCisanempiricalparameter,anditcanonlyexpresstheroughnessofone-dimensionalcurveandcannotbeemployedtodescribethenaturaljointroughnesspreciselybecausethenaturaljointscontainthree-dimensionalroughsurfaces,inwhichthedimensionshouldbegreaterthan2andlessthan3.Asstresswavescrossjoints,itisverydifficulttodeterminetheanglebecausethejointsurfacesusuallyconsistofvarioussubsurfaceswithdifferentnormaldirections.Underthisscenario,itisnecessarytouseanotherparameter,fractaldimension,todescribethejointroughness.Fractaldimensionscanbeappliedtodescribingthejointroughness[18–20]anditwillbeemployedinthisstudy.Inthispaper,anattemptismadetoobtaintheyticalsolutionforthecoefficientsoftransmissionandreflectionofstresswavesacrossjoints.Thefractaltheory[21–23]combiningwithdamagemechanicstheorywillbeappliedtocharacteringthejointroughness.Thefractalgeometricalcharacteristicsofjointsurfacesareinvestigatedbyusinglaserprofilometer.Finally,byusingSplitHopkinsonPressureBar(SHPB)testingsystem,experimentalinvestigationsforthetransmissionandreflectionofstresswavesacrossasinglerockjointareconducted.TheoreticalWhenstresswavesencounterjoints,itisverydifficulttodeterminetheanglebecausethejointsurfacesusuallyareveryrough,andtherefore,theparametersofamplitudeandorientationofthetransmittedandreflectedwavescannotbedetermined.Inthefollowing,wewillinvestigatethefactualityofjointsurfacesbyfractaltheoryandderivethecoefficientsoftransmissionandreflectionofstresswavesacrossjoints.JointBasedonthefactthattheevolutionofrockdamaginghasthecharacteristicoffractal,XieandJu[18]havedefinedafractaldamagevariableω(̅,ζ)thatnotonlycanexpressthedamageintrinsicmechanismtativelyintwo-dimensionalEuclideanspaces,butalsocanbeeasilyadoptedinmacro-scaledamagingysisbyusingthetheoryofdamageandfractalω(̅,ζ)=1−(1−ω0)ζ(̅−de) where̅isthedimensionofthecomplementofthedamagearea,ζisthemeasurementdeistheEuclideandimension,in2Dcaseitequals2,andin3Dcaseitis3,andω0isanominaldamagevariableandisdefinedas 00ω0S-00
whereS0isaninitialareaofazone(thenominalareainEuclideanspace),Sisthedamagedareainthezone,̅istheno-damagedareainthezone,andtheirrelationisS0=S+̅.UsingEsq.(1)and(2),onecanobtainthedamagevariableω(̅,ζ),andthecorrespondingtheoreticalandexperimentalstudyhasbeenpresentedinreferences[18].However,forthevariableω0expressedinEq.(2),onlythedamageoccurredinsurfaceneshasbeenconsidered,andthedamagealongdepthisignored.ThiswillsomehowcauseerrorasthedamageactuallyvariesalongFig.1showsadamagedzonewithtwodifferentdamagedepths.ItcanbeseenthatifoneusesEq.(2)tocalculateω0,forthetwocases,theresultswillbethesame.However,becausethedamagedepthsaredifferent,thedamageextentsshouldbedifferenttoo.Inordertoaccurayandeffectivelydescriberockdamage,itisnecessarytousetheratioofvolumestorecetheratioofareasinEq.(2),thatisω=V=1-̅
WhereV0istheinitialvolumeofazone(thenominalvolumeinEuclideanspace),Visthedamagedvolumeinthezone,̅istheno-damagedvolumeinthezone,andtheirrelationisd¼3).SubstitutingEq.(3)intoEq.(1),thefractaldamagevariablecanbewrittenas(note:incases,de=ω̅,)=1(̅
)
Accordingtothedefinitionofdamagevariables,thejointstiffness̅canbeexpressedintermsofthedamagevariableω(̅,ζ),as̅=K0(1−ω(̅,ζ)) SubstitutingEq.(4)intoEq.(5),thejointstiffnessofdamagedrockjointscanberewritten̅= Fig.2showstworockspecimens;theheightforthespecimenwithjointisH,andtheheightforthespecimenwithoutjointisH-∆,where∆isthejointwidth.Underuniaxialcompression,thediscementsofbothspecimens(δjforthespecimenwithjoint,andδforthespecimenwithoutjoint)canbeeasilymeasured,andthedifference,δj-δ,isthejointdiscement,thus,therelationofloadsPversusjointdiscements,δj-δ,canbeobtained,andthejointnormalstiffnesscanbeCoefficientsofwavetransmissionandAsstresswavesencounterjoints,theywillsufferpartialreflectionandtransmission.Inthispaper,byusingthefractaldamagetheoryandcombiningwiththeformeryticalsolutionofwavepropagationacrossstraightjoints,thecoefficientsofwavetransmissionandreflectionacrossjointswillbederived.Fig.3showsaroughjointanditscorrespondingequivalentstraightjoint;thejointstiffnessofthestraightjointissupposedtobethesameasthatoftheroughjoint.ThepropagationofPwavesandSwavesareindependent,buttheyaregenerallymutuallyrelativewheneitherPwaveorSwavetransmittedandreflectedonjoints.Exceptforthecasethatawaveisnormallyprojectedontheinterface,thatis,normalincidence,twokindsofwavescouldgothroughuncoupledsolution.Forstresswavesobliquelytojoints,inordertomeetboundarycondition,whetherPwavesorSwavesaresuretosimultaneouslyreflectPwavesandSwaves,andtransmitPwavesandSwaves.ConsideringthecasethatonlyanePwaveonthestraightjointinterface,whichwillproducessimultaneouslyareflectedPwaveandSwave,andatransmittedPwaveandSwaveasshowninFig.3.Foreachofthesefivewaves,thereisacorrespondingwavepropagationequation,thus,therearetotallyfiveequationswhichcanbeexpressedasfollows[24]:u0=A0u1=A1expu2=A2exp[i(Kx2x+ky2y−ωt)]u3=A3exp[i(Kx3x+ky3y−ωt)]u4=A4exp
where{u0,u1,u2,u3,u4}arethediscementsinducedbythe Pwave,reflectedSwave,transmittedPwaveandtransmittedSwave,respectively,{A0,A1,A2,A3,A4}arethecorrespondingwaveamplitudes,respectively,andωandkaretheangularfrequencyandwavevector,respectively.ThediscementcomponentsinzoneIandzoneIIshowninFig.3canbeexpressed(ux)1=u0cosα1−u1cosα1+u2sinyy
)=010
sin
+
sin
+
(ux)2=u3cosα2−u4siny{(u)=usinα+ucosy
1whereα1,α2,β1andβ2aretheanglesshowninFig.3,1
2thediscementcomponentsalongxandyaxialdirection,respectively,thesubscripts1and2inEsq.(8)and(9)representzoneIandzoneII,respectively.Supposingthedeformationsinducedbythestresswavesareintheelasticrange,then,therelationbetweendiscementandstresscanbewrittenas2 =(λ+2μ)∂ux+λ =μ∂uy+ ( WhereμisshearmodulusAccordingtothediscementdiscontinuitymodelproposedbyPerak-Nolte[12],thestressesonthecommonboundaryofzoneIandzoneIIsatisfythefollowing(σxx)1= 11
=
2
(ux)1−(ux)2=̅̅̅̅ y(uy1
−
=̅̅̅
Where̅andKyarethejointnormalstiffnessandshearstiffness,respectively.Thecoefficientsoftransmissionandreflectionaredefinedas =A1,
=
=A3,
=
WhereFR1andFR2arethereflectioncoefficientsofthereflectedPwaveandSwave,respectively,andFT1andFT2denotethetransmissioncoefficientsofthetransmittedPwaveandSwave,respectively.Asstresswavespropagateinanelasticbody,therelationoftheparameterscanbeexpressedasPλ+2μ= PSμ= Sλ=ρ(∁2− Whereλ=
,νisthePoisson’sratio,CpisthePwavespeed,CsistheSwaveμistheshearmodulusandρisthedensity.FromEsp.(7)to(19),weobtainthefollowing
s1sin2α1−FR1s1sin2α1−FR2∁s1cos
−2[FT1s2sin2α2+FT2∁s2cos
ρ
(∁p1−sin2α1s1)(1+FR1)−FR2∁s1sin2β−2[FT1(∁p2−sin2α2s2)
FT2∁s2sin2β2]= (cosα1−FR1cosα1+FR2sinβ1)−(FT1cosα2−FT2sinβ2)∁(∁p1−sin2α1s1)(1+FR2)−FR2∁s1sinx̅̅̅̅ x(sinα1+FR1sinα1+FR2cosβ1)−(FT1sinα2+FT2cosβ2) s1sin2α1−FR1s1sin2α1−FR2∁s2cos (iͥρ
Whereϕarewaveangularfrequency,andthesubscripts1and2intheaboverepresentzoneIandzoneII,respectively.Fornormalincidence,i.e.thePwaveisperpendiculartothejointsurfaces,onecanhaveα1=α2=β1=β2=0.Iftherockspropertiesbothsidesofthejointarethesame,thenthedensityofrockmassandthevelocityofstresswaveatbothsidesareidentical,thus,fromEsq.(20)to(23),weobtainthecoefficientsofthereflectedPwaveandthetransmittedPwaveas
= ,
=2̅/ϕZ
)
)Where:Zisthewaveimpedance.SubstitutingEq.(6)intoEq.(24),weobtaintheyticalsolutionofthecoefficientsoftransmissionandreflectionasstresswavescrossjoints ̅(̅−3)
])/(ϕZ)
2K0(̅)ζ(̅−3)= (ϕZ) = ̅ ̅ V√1+4((K0[(VV0
ExperimentInordertovalidatethetheoreticalsolution,i.e.Eq.(25),dynamicexperimentalstudyforrockspecimenswithasinglejointbyusingSplitHopkinsPressureBar(SHPB)isconducted,andbyusingalaserprofilometer,thejointsurfaceshavebeenscanned,andthejointsurfacefractaldimensionshavebeenmeasured,andtheresultshavebeenemployedtocalculatethecoefficientsoftransmissionandreflectionofwavesacrossjoints.SHPBtestingSplitHopkinsPressureBariswidelyusedforcharacterizingdynamicresponseofengineeringmaterials.TheSHPBsystemusedinthisstudyisshowninFig.4.ThelengthsofthebarandtransmissionbaroftheSHPBarethesame,2.0m,andandthefrictionbetweentheendsofthespecimensandtheinputandoutputbars,weappliedasinglejointedspecimenwith12mminlengthand30mmindiameter.Theimpactwavesweregeneratedandpropagatedalongtheaxialdirectionsofthespecimencylinders,andperpendicularlyprojectedtothejointsurfaces,whichislocatedinthemiddleofthe12mmlongspecimen.Theobjectiveofthisexperimentalstudyistoinvestigatetheeffectofjointsurfaceconfigurationonwavereflectionandtransmission,soastovalidatethetheoreticalresultsofthecoefficientsofwavereflectionandtransmission.Inordertominimizethesideeffectoflargesticdeformationandadditionalcracking,theimpactstrikerspeedshouldbecontrolledwithinacertainrange,suchthatthesticityandcrackinginthespecimeninducedbytheimpactwerenegligible,thus,noirreversibleenergywilldissipateexceptforthediscementofjointsurfaceduringthewavepropagation.AccordingtothepreliminarySHPBtestsusingintactrockswithdifferentimpactspeed,theimpactspeedof6.8m/swasadoptedfinallyintheSHPBtests.Thewave,reflectedwaveandtransmittedwavearecollectedbysuperdynamicapparatus.Stressgaugeswereemployedinrecordingthestresswaves,andweresituatedinthemiddleoftheandtransmissionbars,respectively(seeFig.4).Inordertorecordthestresswavescontinuouslyandaccurayandtoavoidtheinfluenceofpulsesreflectedfromtheandthecontactedends,thedistancebetweenthestraingaugesandtheendsofthebarsislargerthanthelengthofthestrikerbarwhichis200mminlength.SHPBspecimenpreparationandtestingRockcoreswithadiameterof30mmwerefirstdrilledfrommarbleblocks.Toavoidthewereselectedtomakerockspecimens.Bythree-pointbendingmethod,theselectedrockcoreswerefracturedintotwoparts,andthesetwopartswereadheredtogetherandbycuttingthetwoendsofthecore,a12mmlongspecimenwithajointinthemiddle,showninFig.5,wasmade.Theendsofthespecimenshavebeengroundverycarefullysuchthatthefrictionlessconditioncanbesatisfiedbeforeweinstalledthespecimenbetweenthesteelbars.Becausethespecimenlength12mmisveryshortascomparedtothebar,thestrainsonthetwoendsareapproximaythesameinaveryshorttimeinterval,whichcanmeetthehypothesisofstrainuniformity.Becausethelengthofthespecimenssatisfiestherequirementofh=√3νr,whereristheradiusofthespecimencylindersandnisthedynamicPoisson’sratiooftherock,stresswavespropagatingalongthespecimencanbeconsideredasone-dimensionalstresswave[25–27].Therefore,intheseteststhestraininsidethespecimenwasone-dimensionalanduniformelasticstrain.Basedontheelasticwavetheory,onecanexpressthehistoriesofstressσ(t),strainrateε̇andstrainεwithinthespecimenasσ(t)=EA[ε(t)+ε(t)+ε ∫ε(t)= t[ε(t)−ε(t)−ε∫
l0 ε̇(t)=C[ε(t)−ε(t)−ε whereA0andl0aretheinitialareaandinitiallengthofthespecimen,respectively,EandAaretheYoung’smodulusandtheareaofthebar,respectively,Cisthelongitudinalstresswavevelocityofthebar.Thetiesindicatingbythesubscripti,randtrefertothe,reflectedandtransmittedwave,respectively.ByusingtheaboveSHPBtestingsystemandthespecimens,thecurvesofstrainversustimeforthe,reflectedandtransmittedwavescanbemeasuredandtheresultscanbecollectedautomatically.Fig.6showsthreetypicalcurvesofstrainversustimeforthespecimenNo.10,No.13andforthespecimenwithoutjoint.Thecorrespondingcoefficientsoftransmissionandreflectionofstresswavesacrossthejointscanbecalculated.Fig.6showsthatbothamplitudesofthereflectedandtransmittedwavesarelessthanthoseofthewaves.TheamplitudesoftransmittedwavesinFig.6aregreaterthanthoseofthereflectedwaves,whichindicatesthatmostoftheenergyofthewavehastransmittedthejointsandonlylessenergyhasreflectedbacktothebar.Forthespecimenwithoutjoint,theamplitudeofitstransmittedwaveislargerthanthoseforthespecimenswithjoints,andtheamplitudeofitsreflectedwaveislessthanthoseforthespecimenswithjoints.Thisistobeexpected,asjointscanblockwavepropagation.FractalitymeasurementofjointAlarge-scalelaserprofilometerisappliedtoscanningtherockspecimensurfacesbeforeSHPBtests.Thescanningcapacityofthelaserprofilometerscopesupto30mmwitharesolutionof7mmandaminimumscanningincrementof7.5mm.Anadvancedsurfacemethod,non-contactsurfacemeasurementmethod,whichcanavoidcuttingordamagingthetargetsurfacebytheprobeduringscanningtest,wasemployed.Intotal,thirteenjointsurfacesofrockspecimensweretestedbyusingthelaserprofilometer,andthethree-dimensionalcoordinatesoftheroughsurfaceswerecollected.Thefractaldimensionsoftheroughsurfacesarecalculatedbyapplyingthefractalprojectivecoveringmethod[20–22],andthespecimensurfaceprofilesaswellasthecorrespondingbi-logarithmrelationofthecoveringboxnumberversustheboxscaleforfourtypicalmarblespecimensbeforeSHPBtestsareshowninFig.7,whereDisthedimensionofthespecimensurfaces.Fig.7showsthattheerrorofthelinearfitbetweenthelogarithmofcoveringboxscaleandthelogarithmofthenumberofboxesusedforcoveringthejointsissmall.ForspecimenNo.6,theerroris4.3%whichistheumerrorinallbi-logarithmplots,whereasforspecimenNo.13,theerrorisonly0.99%.Fromthefourjointconfigurationsandthecorrespondingbi-logarithmplotsshowninFig.7,itcanbeseenthatthefractaldimensionincreaseswiththeroughnessofthejointsurfaces,thatis,therougherthejointsurface,thehigherthefractaldimension.TheoreticalandexperimentalresultsofthecoefficientsoftransmissionandEq.(25)canbeemployedtocalculatethecoefficientsoftransmissionandreflectionofwavesacrossjoints.BeforeusingEq.(25),theinitialvolumeV0ofazoneandtheno-damagedvolume̅ofthezonehavetobedetermined.FromFig.1,V0canbewrittenasV0=πr2(hmax− Wherehmaxandhminarethe umandminimumheightofthejointsurfacescannedbythelaserprofilometer,respectively,risthespecimenradius.Theno-damagedvolume̅canbewrittenas̅=∑m
+ +
−
j=1[4(hi,j+
Wherehistheheightofatargetpointscannedbythelaserprofilometer,mandnarethenumbersofthetargetpointsscannedalongxandyaxis,respectively,andhmin=min(hi,j+hi+1,j+hi,j+1+hi+1,j+1)FromEqs.(27)And(28),onecanhave̅
∑m∑n + + +
−
Table1showsrockparametersmeasuredinthisexperimentalstudy.Thevelocityofstresswavewasmeasuredbyanultrasonoscope.SubstitutingtheparametersinTable1andEq.(29)intoandthecorrespondingtheoreticalresultsarepresentedinTable2.FromtheSHPBtestingresultsofthecurvesofstrainversustimeasshowninFig.6,onecaneasilyobtainthecoefficientsoftransmissionandreflectionofstresswavesacrossjoints,andtheSHPBtestingresultsarealsopresentedinTable2forcomparison.Itcanbeseenthatforthetransmissioncoefficients,theaveragepercentdifferencesbetweenthetheoreticalandexperimentalcoefficientsisonly1.14%,andforthereflectioncoefficients,itis5.42%.ThisindicatesthatthecoefficientsoftransmissionandreflectionpredictedbyEq.(25)arereliable,andaccordinglyEq.(25)iseffective.Fig.8showsthecurvesofthetheoreticalandtheSHPBtestingresultsforthecoefficientsofreflectionandtransmissionasstresswavescrossjoints.Itcanbeseenthatwiththeincreaseofthefractaldimensionofjointsurfaces,thetransmissioncoefficientsofstresswavedecrease,andthecorrespondingreflectioncoefficientsincrease.Thisiseasytounderstandbecausethelargerthefractaldimensionis(ortherougherthejointsurfaceis),thelargerthejointreflectionis.FromFig.8,itcanbeseenthatgenerally,thetheoreticalresultsofthecoefficientsoftransmissionandreflectionagreewellwiththeSHPBtestingresults,andtheerrorbetweenthemisverysmall,whichindicatesthatthefractaldamagemodelofjointspresentedinthispaperiseffective,andtheyticalsolutionforthecoefficientsoftransmissionandreflectionofwavesacrossjointsisreliable.Afractaldamagejointmodelhasbeendeveloped,andtheyticalsolutionEq.(25)forthecoefficientsoftransmissionandreflectionofstresswavesacrossjointshasbeenestablishedbyusingthefractaldamagejointmodel.Itisshownthatasthefractaldimensionofjointsurfacesincreases(orastheroughnessofjointsurfacesincreases),thetransmissioncoefficientsdecrease,whereas,thereflectioncoefficientsincrease.ASHPBtestingsystemhasbeenemployedtomeasurethecoefficientsoftransmissionandreflectionforrockspecimenswithasinglejoint.ItisshownthattheSHPBtestingresultsagreewellwiththetheoreticalresultspresentedinthispaper,whichindicatesthatthefractaldamagemodelofjointsdevelopedinthisPaskaramoorthyR,DattaSK,ShahAH.Effectofinterfacelayersonscatteringofelasticwaves.JApplMech1988;55:871–8.ChevalierY,LouzarM,MauginGA.Surfacewavecharacterizationoftheinterfacebetweentwoanisotropicmedia.JAcoustSocAm1991;90:3218–27.ShindoY,NiwaN.Scatteringofantineshearwavesinafiber-rein dcompositemediumwithinterfaciallayers.ActaMech1996;117:181–90.CaiJG,ZhaoJ.Effectsofmultipleparallelfracturesonapparentattenuationofstresswavesinrockmasses.IntJRockMechMinSci2000;37:661–82.KingM.Elasticwavepropagationandpermeabilityforrockswithmultipleparallelfractures.IntJRockMechMinSci2002;39:1033–43.FanSC,JiaoYY,ZhaoJ.Onmodelingof boundaryforwavepropagationinjointedrockmassesusingdiscreteelementmethod.ComputGeotech2004;31:57–66.KrasnovaT,JanssonP,BostromA.Ultrasonicwavepropagationinananisotropiccladdingwithawavyinterface.WaveMotion2005;41:163–77.GulyayevVI,IvanchenkoGM.Discontinuouswavein ctionwithinterfacesbetweenanisotropicelasticmedia.IntJSolidsStruct2006;43:74–90.GongQM,JiaoYY,ZhaoJ.NumericalmodellingoftheeffectsofjointspacingonrockfragmentationbyTBMcutters.TunnellingUndergroundSpaceTechnol2006;21:46–55.ZhuZ,ntyB,XieH.Numericalinvestigationofblasting-inducedcrackinitiationandpropagationinrocks.IntJRockMechMinSci2007;44:412–24.ZhuZ,XieH,ntyB.Numericalinvestigationofblasting-induceddamageincylindricalrocks.IntJRockMechMinSci2008;45:111–21.Pyrak-NolteLJ.Seismicvisibilityoffractures.Ph.D.Thesis,UnivCalif,Berkeley;ZhaoJ,CaiJG.TransmissionofelasticP-waveacrosssinglefractureswithanonlinearnormaldeformationalbehavior.RockMechRockEng2001;34:3–22.WangWH,LiXB,ZuoYJ.Effectofnon-linearlynormaldeformationaljointonelasticp-wavepropagation.ChinJRockMechEng2006;25:1218–25.[in DougillJW,LauJC,BurtNJ.MechanicsinEnging.ASCE,EMDKahramanS.TheeffectsoffractureroughnessonP-wavevelocity.EngGeolBamfordWE.Suggestedmethodsforthetatived ptionofdiscontinuitiesinrockmasses.IntJRockMechMinSci1978;15:319–69.XieH,JuY.Astudyondamagemechanicstheoryinfractionaldimensionalspace.ActaMech1999;31:300–10[in JuY,SudakL,XieH.Studyonstresswavepropagationinfracturedrockswithfractaljointsurfaces.IntJSolidsStruct2007;44:4256–71.XieH,WangJA.Directfractalmeasurementoffracturesurfaces.IntJSolidsStructMandelbrotBB.HowlongisthecoastlineofBritain?Statisticalself-similarityandfractaldimensionScience1967:155–636.ZhouHW,XieH.Directestimationofthefractaldimensionsofafracturesurfaceofrock.SurfRevLettMandelbrotBB.TheFractalGeometryofNature.New man;Pyrak-NolteLJ,MyerLR,CookNGW.Transmissionofseismicwavesacrosssinglenaturalfractures.JGeophysRes1990;95(6):8617–38.DaviesEDH,HunterSC.ThedynamicscompressiontestingofsolidsbythemethodsofthesplitHopkinsonpressurebar.JMechPhysSolids1963;11:155–79.LifshitzJM,LeberH.DataprocessinginthesplitHopkinsonpressurebartests.IntJImpactEng LindholmUS.SomeexperimentswiththesplitHopkinsonpressurebar.JMechPhysSolids
1,(.大学水利水电学院,中国60065;2.襄樊学院土木工程系,中国襄樊44053;3.大学建筑与环境学院,中国60065):为探讨应力波穿越不规则节理时的透反射规律,基于分形损伤理论建立分形损伤节理模型,在此基础上,根据分形损伤节理模型,推导应力波穿越节理时透反射系数,SHPB节理岩石冲击动力学试验解与试验结果进行对比分析.SHPB试验的结果和应力波穿越分形节理的解析构面面由于承受了动力负荷使得岩体材料的强度和稳定性都有所减小。这些动力负荷包如今,为了研究节理面对应力波的和能量耗散[–8]的影响建立了大量的关于节理方向[9],[0,]以及是否干性节理等等。关于波在节理中的课题,Cai和Zhao[4]探讨了多分形节理面对岩层中应力波衰减的影响。Fanetal.[6]曾提出过使用离散单元法(DEM)对在节理发育的岩体中波的和衰态相互作用的相关问题。Pyrak−Nolte[2]、Zhao和Cai[3]研究过线性变形节理中应力波的特性,并且推导出应力波的透反射系数。Wangetal.[4]借鉴岩石损伤力学思想,基值角度与Zhao和Cai[3]的研究结论完全一致。Kahraman[6]模拟节理面的粗糙性,并探Bamford于978年节理粗糙度系数JRC(jointroughnesscoefficient)可以描述节理粗糙度对应力波的JRC只是一个经验参数,且仅能用来描述曲线的粗糙度对于空间曲面的粗形下,有必要引入另外一个参数,分形维数,粗糙度8–20],并且应用于此项研究之中。本文将尝试推导应力波穿越节理时透反射系数的解析解。结合分形理论[2–23]和损伤SHPB试验设备对应力波穿越单一岩石节理的透反射规律进行试验研究。当应力波穿越节理面,由于界面面一般比较粗糙所以很难判断其入射角度。而且,应力波的振幅参数和透反射方向的理论推导也十分在下文中,利用分形理论依据材料损伤演化具有分形性质的基本事实Xie和Ju[8]结合损伤力学原理与分形理论,给出了一种兼顾损伤细观特征描述和宏观损伤力学分析需要的分形损伤变量ω(̅,ζ),0ω(̅,ζ)=1−(1−ω (0:̅3;ω0为表观损伤变量,可表示为 ω0S
式中:S0为承载面的初始截面积,即二维欧氏空间中各区域的表观面积,S为损伤后的有效截面积,̅是无损伤的有效截面积,并且有S0=S+̅的关系。ω(̅,æ),已经[18]。可是等式(2)中的变量ω0,只有考虑到假设损伤发生在表面并且损伤的深度忽略不计。但是当损伤却是发生在不同的深处时必将一些错误。图显示了含两种不同损伤深度的损伤区域。很明显如果应用等式(2)计算ω0,对于下ω=V-̅
式中:V0V̅是无损伤体积,并且有V0V+̅的关系。把式(3)代入式()中,分形损伤变量可以表示为(3维计算中,de=3)̅ω(̅,ζ)ù(̅,ζ)̅=K0(1−ù(̅,ζ))
̅=
̅
K02显示了两种岩石样本,H表示有节理样本的高度,H-∆表示无节理样本的高度,∆δj-δP,2.2.3表示一个粗糙节理和它的等效平直节理;即平直节理的节理刚度等效于此粗糙节2种可以分别解耦地处理外,在斜入射情况下,为满足给定的边界条件,则不论入射波u0=A0exp[i(Kx0x+ky0y−ωt)]u1=A1expu2=A2exp[i(Kx2x+ky2y−ωt)]u3=A3exp[i(Kx3x+ky3y−ωt)]u4=A4exp
射横波质点位移;A0,A,A2,A3,A4(ux)1=u0cosα1−u1cosα1+u2siny{(uy1
=u0sinα1+u1sinα1+u2cos (ux)2=u3cosα2−u4siny{(uy2
=u3sinα2+u1cos 1式中:α1,α2,β1和β23中所示的的角度。式中:(ux)1,(uy)1
x,y方向的位移分量。式(8)和式(9)中的下标,2表示区、2 =(ë+2ì)∂ux+λ
xy=μ(∂x
(式中μ是切变模数。.依据L.J.Pyrak-Nolte[2]线弹性位移不连续模型可知,在节理处的,2区内应力、位移应满足应力连续、位移间断的假定,即(σxx)1= (11
=
(
−
=̅̅̅
(y(uy1
−
=̅̅̅
(式中:和Ky =A1, =
( =A3, =
( 式中FR1为反射纵波的反射系数,FR2为反射横波的反射系数,FT1为透射纵波的透射系数,FT2为透射横波的透射系数。当应力波在弹性介质中时,应力波波速与弹Pλ+2μ= (PSμ= (Sλ=ρ(∁2− ( λ= CP(7)到式(9)可以推导出下列
s1sin2α1−FR1s1sin2α1−FR2∁s1cos2β1 [FT1s2sin2α2+FT2∁s2cos2β2]0
(∁p1−sin2α1s1)(1+FR1)−FR2∁s1sin2β1
[FT1(∁p2−sin2α2s2) FT2∁s2sin2β2]= (2
(cosα1−FR1cosα1+FR2sinβ1)−(FT1cosα2−FT2sinβ2)∁(∁p1−sin2α1s1)(1+FR2)−FR2∁s1sin∁̅̅̅
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《接触网施工》课件 4.8.1 交叉线岔安装
- 员工风采暨 员工表彰大会(奋斗激情青春拼搏)
- 文书模板-广播站退站申请书
- 视频编辑职业技能提升:2024年edius培训精粹
- 面向2024:《口耳目》教学策略新变化
- 2024年LPCVD技术在3C产业的应用培训
- 2023年控烟工作计划
- 五年级语文楚才杯出糗记获奖作文5
- 一年级上册道德与法治教学设计(6篇)
- 《欧亨利短篇小说》创作特色探析
- 中国厨房电器行业消费态势及销售状况分析研究报告(2024-2030版)
- 冬季施工恶劣天气应急预案
- 海南省海口市海南省华侨中学2024-2025年八年级上期中考试物理试题(含答案)
- 《江西二年级数学上学期期中试卷全解析》
- 江苏省扬州市江都区2024-2025学年七年级上学期第一次月考数学试卷
- 赛力斯招聘在线测评题
- 冬季传染病预防-(课件)-小学主题班会课件
- 2024年秋新北师大版数学一年级上册课件 第四单元 一起做游戏
- 云南省昆明市五华区2022-2023学年九年级上学期期中检测物理试题
- 人教版四年级上册美术教案设计-表格
- 居间人土方合同协议书
评论
0/150
提交评论