版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于融合学习的低剂量CT图像重建算法研究基于融合学习的低剂量CT图像重建算法研究
摘要:
由于低剂量CT对于肺癌筛查具有广阔应用前景,近年来为了减少低剂量脑CT造成的辐射剂量,提高重建质量,发展了许多低剂量CT图像重建算法。然而,这些方法仍面临诸多挑战,如结构体积效应、深度学习模型泛化能力难以掌控等。为解决这些问题,本文提出了一种基于融合学习的低剂量CT图像重建算法。首先,利用瑞利-拉斯福德反演算法进行初步重建,获得初步重建图像;然后,将初步重建图像连接入一个深度融合模型中,从而结合了低剂量和高剂量图像信息进行重建;最后,通过对比实验和主观评估,证明了该算法的有效性和可行性。
关键词:低剂量CT;图像重建;融合学习;深度网络
Abstract:
Duetothebroadapplicationprospectsoflow-doseCTinlungcancerscreening,inrecentyears,manylow-doseCTimagereconstructionalgorithmshavebeendevelopedtoreducetheradiationdosecausedbylow-dosebrainCTandimprovethereconstructionquality.However,thesemethodsstillfacemanychallenges,suchasthestructurevolumeeffectandthedifficultyincontrollingthegeneralizationabilityofdeeplearningmodels.Tosolvetheseproblems,thispaperproposesalow-doseCTimagereconstructionalgorithmbasedonfusionlearning.First,thepreliminaryreconstructioniscarriedoutbyusingtheRayleigh-Lassondeinversionalgorithmtoobtainthepreliminaryreconstructionimage.Then,thepreliminaryreconstructionimageisconnectedtoadeepfusionmodel,whichcombineslow-doseandhigh-doseimageinformationforreconstruction.Finally,throughcomparativeexperimentsandsubjectiveevaluation,theeffectivenessandfeasibilityoftheproposedalgorithmareproved.
Keywords:low-doseCT;imagereconstruction;fusionlearning;deepnetworInrecentyears,withthedevelopmentofmedicaltechnology,theadvancementoflow-doseCThasbecomeanimportantresearchtopic.ThetraditionalCTscanmethodrequireshighradiationdose,whichcausessevereharmtopatients.ByreducingtheradiationdoseduringCTscans,low-doseCThasgraduallyattractedattentionasitcaneffectivelyreducetheharmtopatientswhileobtainingaccuratemedicalinformation.
However,conductingimagereconstructionbasedonlow-doseCTpresentschallengesasthelowradiationdoseresultsinnoiseandimageblurinthereconstructedimages.Toaddressthischallenge,adeeplearning-basedframeworkisproposedinthisstudy.
TheproposedmethodcombinestheadvantagesofRayleigh-Lassondeinversionalgorithmanddeepfusionlearning.TheRayleigh-Lassondeinversionalgorithmisusedtoobtainthepreliminaryreconstructionimage,whichprovidestheinitialimagefordeepfusionlearning.Then,thepreliminaryreconstructionimageandthehigh-doseimagearecombinedthroughdeepfusionlearningtoreconstructhigh-qualityimages.
Toevaluatetheeffectivenessandfeasibilityoftheproposedalgorithm,experimentswereconductedonclinicaldata.Theexperimentalresultsdemonstratedthattheproposedalgorithmsignificantlyoutperformedotherstate-of-the-artreconstructionalgorithmsintermsofimagequalityandnoisesuppression.
Inconclusion,theproposedmethodisaneffectiveandfeasibleapproachforlow-doseCTimagereconstruction.ItprovidesapromisingsolutionforreducingtheradiationdoseduringCTscansandproducinghigh-qualitymedicalimageswithreducednoiseandimageblurFutureworkcanfocusonexploringtheeffectivenessoftheproposedalgorithmonlargerdatasetsandclinicaltrials,aswellasoptimizingthehyperparameterstomaximizeitsbenefits.Additionally,itwouldbeinterestingtoinvestigatetheperformanceofthealgorithmonvarioustypesofCTscans,includingthoseofdifferentbodypartsandorgans,andtocompareitwithotherreconstructionalgorithmsinthosescenarios.
Moreover,theproposedalgorithmcanalsobeappliedtoothermedicalimagingmodalities,suchasmagneticresonanceimaging(MRI)andpositronemissiontomography(PET),inordertoreduceradiationexposureandimproveimagequality.Futureresearchcanexplorethepotentialofthealgorithmintheseareas.
Intermsofimplementation,theproposedmethodcanbeintegratedintomodernCTmachinestoenablereal-timelow-doseCTimagingforclinicaluse.ThiswouldgreatlyimprovethesafetyofCTscansandprovidephysicianswithhigh-qualityimagesfordiagnosisandtreatmentplanning.
Lastly,theproposedalgorithmhassignificantpotentialforimprovingradiationtherapyplanningandmonitoring.Byprovidinghigh-qualityCTimageswithreducednoiseandimageblur,thealgorithmcanenhancetheaccuracyoftreatmentplanningandallowformoreprecisetargetingoftumors.Furthermore,byreducingtheradiationdose,thealgorithmcanhelpminimizethesideeffectsofradiationtherapyonhealthytissues.
Insummary,theproposedlow-doseCTimagereconstructionalgorithmisapromisingsolutionforreducingradiationexposureduringCTscanswhilemaintaininghigh-qualitymedicalimages.Furtherresearchcanexploreitsefficacyonlargerdatasetsandinclinicalsettings,aswellasitspotentialapplicationsinothermedicalimagingmodalitiesandradiationtherapyplanningOnepotentialapplicationofthelow-doseCTimagereconstructionalgorithmisinlungcancerscreeningprograms.Thecurrentstandardscreeningmethodislow-doseCT,butconcernsaboutradiationexposurelimititswidespreadimplementation.Withtheuseoftheproposedalgorithm,theradiationdosecouldbefurtherreducedwithoutcompromisingtheaccuracyoftheimages,makinglungcancerscreeningasaferandmoreaccessibleoptionforat-riskindividuals.
Anotherareawherethisalgorithmcouldbeusefulisinradiationtherapyplanning.Medicalimagesarecriticalfortreatmentplanning,buttheradiationdosereceivedduringCTscanscancausesideeffectsandcomplicationsthatreducetheefficacyofthetreatment.Byusingthelow-doseCTimagereconstructionalgorithm,radiationexposurecanbeminimized,allowingformorepreciseandeffectiveradiationtherapy.
Moreover,thealgorithmcouldbeappliedinothermedicalimagingmodalitieslikePETandSPECTscans,whereradiationisalsoaconcern.Byreducingtheradiationdoseinthesescans,morepatientscanbenefitfromtheseimagingtechniques,leadingtomoreaccuratediagnosesandbettertreatmentoutcomes.
Inclinicalsettings,theproposedalgorithmmayalsohelptoreducecostsassociatedwithCTscans,suchasequipmentmaintenance,staffsalaries,andpatientbilling.Byreducingtheradiationdose,fewerimagesmaybeneeded,loweringthenumberofscansperpatient,andultimatelydecreasinghealthcarecost.
Inconclusion,thelow-doseCTimagereconstructionalgorithmisapromisingdevelopmentinmedicalimagingtechnologythathasthepotentialtoimprovepatientsafety,reduceradiationexposure,andenhanceoverallclini
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030文化创意行业商业模式创新竞争格局商业布局规划评估研究报告
- 2025-2030文化创意产业版权保护品牌运营盈利模式
- 2025-2030文化创意产业市场竞争力分析及品牌发展战略研究报告
- 2025-2030文化传播小说出版行业市场未来供需分析及投资评估规划分析研究报告
- 2025-2030文化产权交易所艺术品资产评估及投资风险管控报告
- 2025-2030文化产业园区规划与特色产业发展策略市场分析
- 2025-2030政府服务行业投资发展分析及相关融资策略研究报告
- 2025-2030挪威海洋石油开发行业市场当前供应分析投资评估规划分析研究报告
- 2025-2030挪威海洋工程装备行业市场现状需求趋势分析及投资发展前景研究报告
- 2025-2030挪威海洋工程行业市场现状供需分析发展趋势规划评估分析研究
- 2026年《全科》住院医师规范化培训结业理论考试题库及答案
- 2026北京大兴初二上学期期末语文试卷和答案
- 2025年武汉大学专职管理人员和学生辅导员招聘真题
- 2025新疆智慧口岸建设白皮书
- 2025岚图汽车社会招聘(公共基础知识)测试题附答案
- 2025-2026小学岭南版(2024)美术二年级上册教学设计(附目录)
- 2025福建德化闽投抽水蓄能有限公司招聘15人模拟试卷附答案
- 微生物检验标准操作规范
- 艺术学概论共12章
- 2024年版中国头颈部动脉夹层诊治指南课件
- GB/T 32264-2015气相色谱单四极质谱仪性能测定方法
评论
0/150
提交评论