




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于融合学习的低剂量CT图像重建算法研究基于融合学习的低剂量CT图像重建算法研究
摘要:
由于低剂量CT对于肺癌筛查具有广阔应用前景,近年来为了减少低剂量脑CT造成的辐射剂量,提高重建质量,发展了许多低剂量CT图像重建算法。然而,这些方法仍面临诸多挑战,如结构体积效应、深度学习模型泛化能力难以掌控等。为解决这些问题,本文提出了一种基于融合学习的低剂量CT图像重建算法。首先,利用瑞利-拉斯福德反演算法进行初步重建,获得初步重建图像;然后,将初步重建图像连接入一个深度融合模型中,从而结合了低剂量和高剂量图像信息进行重建;最后,通过对比实验和主观评估,证明了该算法的有效性和可行性。
关键词:低剂量CT;图像重建;融合学习;深度网络
Abstract:
Duetothebroadapplicationprospectsoflow-doseCTinlungcancerscreening,inrecentyears,manylow-doseCTimagereconstructionalgorithmshavebeendevelopedtoreducetheradiationdosecausedbylow-dosebrainCTandimprovethereconstructionquality.However,thesemethodsstillfacemanychallenges,suchasthestructurevolumeeffectandthedifficultyincontrollingthegeneralizationabilityofdeeplearningmodels.Tosolvetheseproblems,thispaperproposesalow-doseCTimagereconstructionalgorithmbasedonfusionlearning.First,thepreliminaryreconstructioniscarriedoutbyusingtheRayleigh-Lassondeinversionalgorithmtoobtainthepreliminaryreconstructionimage.Then,thepreliminaryreconstructionimageisconnectedtoadeepfusionmodel,whichcombineslow-doseandhigh-doseimageinformationforreconstruction.Finally,throughcomparativeexperimentsandsubjectiveevaluation,theeffectivenessandfeasibilityoftheproposedalgorithmareproved.
Keywords:low-doseCT;imagereconstruction;fusionlearning;deepnetworInrecentyears,withthedevelopmentofmedicaltechnology,theadvancementoflow-doseCThasbecomeanimportantresearchtopic.ThetraditionalCTscanmethodrequireshighradiationdose,whichcausessevereharmtopatients.ByreducingtheradiationdoseduringCTscans,low-doseCThasgraduallyattractedattentionasitcaneffectivelyreducetheharmtopatientswhileobtainingaccuratemedicalinformation.
However,conductingimagereconstructionbasedonlow-doseCTpresentschallengesasthelowradiationdoseresultsinnoiseandimageblurinthereconstructedimages.Toaddressthischallenge,adeeplearning-basedframeworkisproposedinthisstudy.
TheproposedmethodcombinestheadvantagesofRayleigh-Lassondeinversionalgorithmanddeepfusionlearning.TheRayleigh-Lassondeinversionalgorithmisusedtoobtainthepreliminaryreconstructionimage,whichprovidestheinitialimagefordeepfusionlearning.Then,thepreliminaryreconstructionimageandthehigh-doseimagearecombinedthroughdeepfusionlearningtoreconstructhigh-qualityimages.
Toevaluatetheeffectivenessandfeasibilityoftheproposedalgorithm,experimentswereconductedonclinicaldata.Theexperimentalresultsdemonstratedthattheproposedalgorithmsignificantlyoutperformedotherstate-of-the-artreconstructionalgorithmsintermsofimagequalityandnoisesuppression.
Inconclusion,theproposedmethodisaneffectiveandfeasibleapproachforlow-doseCTimagereconstruction.ItprovidesapromisingsolutionforreducingtheradiationdoseduringCTscansandproducinghigh-qualitymedicalimageswithreducednoiseandimageblurFutureworkcanfocusonexploringtheeffectivenessoftheproposedalgorithmonlargerdatasetsandclinicaltrials,aswellasoptimizingthehyperparameterstomaximizeitsbenefits.Additionally,itwouldbeinterestingtoinvestigatetheperformanceofthealgorithmonvarioustypesofCTscans,includingthoseofdifferentbodypartsandorgans,andtocompareitwithotherreconstructionalgorithmsinthosescenarios.
Moreover,theproposedalgorithmcanalsobeappliedtoothermedicalimagingmodalities,suchasmagneticresonanceimaging(MRI)andpositronemissiontomography(PET),inordertoreduceradiationexposureandimproveimagequality.Futureresearchcanexplorethepotentialofthealgorithmintheseareas.
Intermsofimplementation,theproposedmethodcanbeintegratedintomodernCTmachinestoenablereal-timelow-doseCTimagingforclinicaluse.ThiswouldgreatlyimprovethesafetyofCTscansandprovidephysicianswithhigh-qualityimagesfordiagnosisandtreatmentplanning.
Lastly,theproposedalgorithmhassignificantpotentialforimprovingradiationtherapyplanningandmonitoring.Byprovidinghigh-qualityCTimageswithreducednoiseandimageblur,thealgorithmcanenhancetheaccuracyoftreatmentplanningandallowformoreprecisetargetingoftumors.Furthermore,byreducingtheradiationdose,thealgorithmcanhelpminimizethesideeffectsofradiationtherapyonhealthytissues.
Insummary,theproposedlow-doseCTimagereconstructionalgorithmisapromisingsolutionforreducingradiationexposureduringCTscanswhilemaintaininghigh-qualitymedicalimages.Furtherresearchcanexploreitsefficacyonlargerdatasetsandinclinicalsettings,aswellasitspotentialapplicationsinothermedicalimagingmodalitiesandradiationtherapyplanningOnepotentialapplicationofthelow-doseCTimagereconstructionalgorithmisinlungcancerscreeningprograms.Thecurrentstandardscreeningmethodislow-doseCT,butconcernsaboutradiationexposurelimititswidespreadimplementation.Withtheuseoftheproposedalgorithm,theradiationdosecouldbefurtherreducedwithoutcompromisingtheaccuracyoftheimages,makinglungcancerscreeningasaferandmoreaccessibleoptionforat-riskindividuals.
Anotherareawherethisalgorithmcouldbeusefulisinradiationtherapyplanning.Medicalimagesarecriticalfortreatmentplanning,buttheradiationdosereceivedduringCTscanscancausesideeffectsandcomplicationsthatreducetheefficacyofthetreatment.Byusingthelow-doseCTimagereconstructionalgorithm,radiationexposurecanbeminimized,allowingformorepreciseandeffectiveradiationtherapy.
Moreover,thealgorithmcouldbeappliedinothermedicalimagingmodalitieslikePETandSPECTscans,whereradiationisalsoaconcern.Byreducingtheradiationdoseinthesescans,morepatientscanbenefitfromtheseimagingtechniques,leadingtomoreaccuratediagnosesandbettertreatmentoutcomes.
Inclinicalsettings,theproposedalgorithmmayalsohelptoreducecostsassociatedwithCTscans,suchasequipmentmaintenance,staffsalaries,andpatientbilling.Byreducingtheradiationdose,fewerimagesmaybeneeded,loweringthenumberofscansperpatient,andultimatelydecreasinghealthcarecost.
Inconclusion,thelow-doseCTimagereconstructionalgorithmisapromisingdevelopmentinmedicalimagingtechnologythathasthepotentialtoimprovepatientsafety,reduceradiationexposure,andenhanceoverallclini
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年兰州市购销合同终止协议
- 2025如何签订租赁期满续租合同
- 2025煤炭购销合同(示范文本)
- 2025年签订股权转让合同:注意风险转移的关键点
- 2025资产委托代理合同
- 2025年网红艺人经纪合同范本
- 2024-2025学年新教材高中政治 第1单元 民事权利与义务 第3课 第1框 订立合同学问大教学设计 新人教版选择性必修2
- 分析电子商务平台在吸引和保留用户方面的策略
- 广西北海市合浦县重点达标名校2023-2024学年十校联考最后数学试题含解析
- 2025年呼和浩特货运从业资格考试题
- 借用品牌合同范本
- 喷洒除草剂安全协议书(2篇)
- 2025年4月自考00015英语二(13000英语专升本)押题及答案
- LTE-V2X系统性能要求及测试规范
- 2025年北森题库测试题及答案
- 中国大唐集团有限公司陆上风电工程标杆造价指标(2023年)
- 2025年美容师初级技能水平测试卷:美容师美容护肤实操技能试题汇编
- 茶馆里的政治:揭秘《茶馆》背后的历史
- 跨学科实践活动5探究土壤酸碱性对植物生长的影响教学设计-2024-2025学年九年级化学鲁教版下册
- 国望液晶数显切纸机安全操作规程
- 特种设备事故应急演练方案(附总结)
评论
0/150
提交评论