版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于融合学习的低剂量CT图像重建算法研究基于融合学习的低剂量CT图像重建算法研究
摘要:
由于低剂量CT对于肺癌筛查具有广阔应用前景,近年来为了减少低剂量脑CT造成的辐射剂量,提高重建质量,发展了许多低剂量CT图像重建算法。然而,这些方法仍面临诸多挑战,如结构体积效应、深度学习模型泛化能力难以掌控等。为解决这些问题,本文提出了一种基于融合学习的低剂量CT图像重建算法。首先,利用瑞利-拉斯福德反演算法进行初步重建,获得初步重建图像;然后,将初步重建图像连接入一个深度融合模型中,从而结合了低剂量和高剂量图像信息进行重建;最后,通过对比实验和主观评估,证明了该算法的有效性和可行性。
关键词:低剂量CT;图像重建;融合学习;深度网络
Abstract:
Duetothebroadapplicationprospectsoflow-doseCTinlungcancerscreening,inrecentyears,manylow-doseCTimagereconstructionalgorithmshavebeendevelopedtoreducetheradiationdosecausedbylow-dosebrainCTandimprovethereconstructionquality.However,thesemethodsstillfacemanychallenges,suchasthestructurevolumeeffectandthedifficultyincontrollingthegeneralizationabilityofdeeplearningmodels.Tosolvetheseproblems,thispaperproposesalow-doseCTimagereconstructionalgorithmbasedonfusionlearning.First,thepreliminaryreconstructioniscarriedoutbyusingtheRayleigh-Lassondeinversionalgorithmtoobtainthepreliminaryreconstructionimage.Then,thepreliminaryreconstructionimageisconnectedtoadeepfusionmodel,whichcombineslow-doseandhigh-doseimageinformationforreconstruction.Finally,throughcomparativeexperimentsandsubjectiveevaluation,theeffectivenessandfeasibilityoftheproposedalgorithmareproved.
Keywords:low-doseCT;imagereconstruction;fusionlearning;deepnetworInrecentyears,withthedevelopmentofmedicaltechnology,theadvancementoflow-doseCThasbecomeanimportantresearchtopic.ThetraditionalCTscanmethodrequireshighradiationdose,whichcausessevereharmtopatients.ByreducingtheradiationdoseduringCTscans,low-doseCThasgraduallyattractedattentionasitcaneffectivelyreducetheharmtopatientswhileobtainingaccuratemedicalinformation.
However,conductingimagereconstructionbasedonlow-doseCTpresentschallengesasthelowradiationdoseresultsinnoiseandimageblurinthereconstructedimages.Toaddressthischallenge,adeeplearning-basedframeworkisproposedinthisstudy.
TheproposedmethodcombinestheadvantagesofRayleigh-Lassondeinversionalgorithmanddeepfusionlearning.TheRayleigh-Lassondeinversionalgorithmisusedtoobtainthepreliminaryreconstructionimage,whichprovidestheinitialimagefordeepfusionlearning.Then,thepreliminaryreconstructionimageandthehigh-doseimagearecombinedthroughdeepfusionlearningtoreconstructhigh-qualityimages.
Toevaluatetheeffectivenessandfeasibilityoftheproposedalgorithm,experimentswereconductedonclinicaldata.Theexperimentalresultsdemonstratedthattheproposedalgorithmsignificantlyoutperformedotherstate-of-the-artreconstructionalgorithmsintermsofimagequalityandnoisesuppression.
Inconclusion,theproposedmethodisaneffectiveandfeasibleapproachforlow-doseCTimagereconstruction.ItprovidesapromisingsolutionforreducingtheradiationdoseduringCTscansandproducinghigh-qualitymedicalimageswithreducednoiseandimageblurFutureworkcanfocusonexploringtheeffectivenessoftheproposedalgorithmonlargerdatasetsandclinicaltrials,aswellasoptimizingthehyperparameterstomaximizeitsbenefits.Additionally,itwouldbeinterestingtoinvestigatetheperformanceofthealgorithmonvarioustypesofCTscans,includingthoseofdifferentbodypartsandorgans,andtocompareitwithotherreconstructionalgorithmsinthosescenarios.
Moreover,theproposedalgorithmcanalsobeappliedtoothermedicalimagingmodalities,suchasmagneticresonanceimaging(MRI)andpositronemissiontomography(PET),inordertoreduceradiationexposureandimproveimagequality.Futureresearchcanexplorethepotentialofthealgorithmintheseareas.
Intermsofimplementation,theproposedmethodcanbeintegratedintomodernCTmachinestoenablereal-timelow-doseCTimagingforclinicaluse.ThiswouldgreatlyimprovethesafetyofCTscansandprovidephysicianswithhigh-qualityimagesfordiagnosisandtreatmentplanning.
Lastly,theproposedalgorithmhassignificantpotentialforimprovingradiationtherapyplanningandmonitoring.Byprovidinghigh-qualityCTimageswithreducednoiseandimageblur,thealgorithmcanenhancetheaccuracyoftreatmentplanningandallowformoreprecisetargetingoftumors.Furthermore,byreducingtheradiationdose,thealgorithmcanhelpminimizethesideeffectsofradiationtherapyonhealthytissues.
Insummary,theproposedlow-doseCTimagereconstructionalgorithmisapromisingsolutionforreducingradiationexposureduringCTscanswhilemaintaininghigh-qualitymedicalimages.Furtherresearchcanexploreitsefficacyonlargerdatasetsandinclinicalsettings,aswellasitspotentialapplicationsinothermedicalimagingmodalitiesandradiationtherapyplanningOnepotentialapplicationofthelow-doseCTimagereconstructionalgorithmisinlungcancerscreeningprograms.Thecurrentstandardscreeningmethodislow-doseCT,butconcernsaboutradiationexposurelimititswidespreadimplementation.Withtheuseoftheproposedalgorithm,theradiationdosecouldbefurtherreducedwithoutcompromisingtheaccuracyoftheimages,makinglungcancerscreeningasaferandmoreaccessibleoptionforat-riskindividuals.
Anotherareawherethisalgorithmcouldbeusefulisinradiationtherapyplanning.Medicalimagesarecriticalfortreatmentplanning,buttheradiationdosereceivedduringCTscanscancausesideeffectsandcomplicationsthatreducetheefficacyofthetreatment.Byusingthelow-doseCTimagereconstructionalgorithm,radiationexposurecanbeminimized,allowingformorepreciseandeffectiveradiationtherapy.
Moreover,thealgorithmcouldbeappliedinothermedicalimagingmodalitieslikePETandSPECTscans,whereradiationisalsoaconcern.Byreducingtheradiationdoseinthesescans,morepatientscanbenefitfromtheseimagingtechniques,leadingtomoreaccuratediagnosesandbettertreatmentoutcomes.
Inclinicalsettings,theproposedalgorithmmayalsohelptoreducecostsassociatedwithCTscans,suchasequipmentmaintenance,staffsalaries,andpatientbilling.Byreducingtheradiationdose,fewerimagesmaybeneeded,loweringthenumberofscansperpatient,andultimatelydecreasinghealthcarecost.
Inconclusion,thelow-doseCTimagereconstructionalgorithmisapromisingdevelopmentinmedicalimagingtechnologythathasthepotentialtoimprovepatientsafety,reduceradiationexposure,andenhanceoverallclini
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工厂设备租赁合同样书
- 出租车承包租赁协议
- 合作推广软件协议正规版样板
- 工伤纠纷调解协议范文
- 动物医疗设备批发协议
- 个人借款合同范本大全
- 食品安全知识竞赛题库及答案(共337题)
- 2024-2025学年课时作业人教版地理选择性必修2课后作业提升7
- 高考数学(北师大版文)讲义第八章 立体几何与空间向量高考专题突破四
- 广东省江门市2023-2024学年高一下学期7月期末考试历史
- 安全生产奖惩制度范文(五篇)
- 第3章文创设计的载体
- 江苏苏州2022022学年七年级上学期阳光指标学业水平调研测试语文试题含答案
- 上颌窦提升学习课件
- 急性短暂性精神病性障碍
- 行政事业单位内部控制业务流程图
- 微生物与人类健康课件
- 三级餐厅服务员考试复习备考题库-下(多选、判断题部分)
- 广告宣传制作合同
- 初中数学-不等式及其解集教学设计学情分析教材分析课后反思
- 家用电器产品特殊要求汇编
评论
0/150
提交评论