




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于计算机视觉的电梯轿厢智能监控系统的研究与设计基于计算机视觉的电梯轿厢智能监控系统的研究与设计
摘要
为了保障人们的生命财产安全,电梯轿厢监控系统逐渐变成一个重要的场所监控领域。本文提出了一种基于计算机视觉的电梯轿厢智能监控系统,该系统可以实现电梯轿厢内的目标检测、跟踪、异常行为检测和人脸识别等功能,有效地提高了电梯轿厢的安全性和管理水平。
本文首先介绍了电梯轿厢监控系统的研究背景和现状。然后,针对目标检测和跟踪问题,提出了基于深度学习的目标检测器YOLOv3和基于卡尔曼滤波的目标跟踪算法。针对异常行为检测问题,提出了基于深度学习的行为识别模型和基于分类器的异常行为检测方法。针对人脸识别问题,提出了基于深度学习的人脸检测和识别模型。
最后,本文设计和实现了一个基于计算机视觉的电梯轿厢智能监控系统原型。该系统采用了基于深度学习的目标检测器YOLOv3、基于卡尔曼滤波的目标跟踪算法、基于行为识别模型的异常行为检测和基于深度学习的人脸检测和识别模型等技术。实验结果表明:本系统可以有效地实现电梯轿厢内人员目标检测、跟踪、异常行为检测和人脸识别等功能,具有较高的实用性和可靠性。
关键词:电梯轿厢,计算机视觉,目标检测,目标跟踪,异常行为检测,人脸识别
Abstract
Inordertoensurethesafetyofpeople'slivesandproperty,theelevatorcarmonitoringsystemhasgraduallybecomeanimportantplacemonitoringfield.Thispaperproposesacomputervision-basedintelligentmonitoringsystemforelevatorcars,whichcanrealizefunctionssuchastargetdetection,tracking,abnormalbehaviordetectionandfacerecognitionintheelevatorcar,effectivelyimprovingthesafetyandmanagementleveloftheelevatorcar.
Thispaperfirstintroducestheresearchbackgroundandstatusoftheelevatorcarmonitoringsystem.Then,forthetargetdetectionandtrackingproblems,adeeplearning-basedtargetdetectorYOLOv3andaKalmanfilter-basedtargettrackingalgorithmareproposed.Fortheabnormalbehaviordetectionproblem,abehaviorrecognitionmodelbasedondeeplearningandaclassifier-basedabnormalbehaviordetectionmethodareproposed.Forthefacerecognitionproblem,adeeplearning-basedfacedetectionandrecognitionmodelisproposed.
Finally,thispaperdesignsandimplementsaprototypeofacomputervision-basedintelligentmonitoringsystemforelevatorcars.Thesystemadoptstechnologiessuchasadeeplearning-basedtargetdetectorYOLOv3,aKalmanfilter-basedtargettrackingalgorithm,anabnormalbehaviordetectionbasedonbehaviorrecognitionmodel,andadeeplearning-basedfacedetectionandrecognitionmodel.Experimentalresultsshowthatthesystemcaneffectivelyachievefunctionssuchastargetdetection,tracking,abnormalbehaviordetectionandfacerecognitionofpersonnelintheelevatorcar,andhashighpracticalityandreliability.
Keywords:elevatorcar,computervision,targetdetection,targettracking,abnormalbehaviordetection,facerecognitioTheproposedcomputervisionsystemforelevatorcarsiscomposedofmultiplemodulesincludingtargetdetection,targettracking,abnormalbehaviordetection,andfacerecognition.Thesystemutilizesalightweightandefficienttargetdetectionalgorithm,whichcanquicklydetectandlocatetheelevatorpassengers.Thetargettrackingmoduleusesadvancedalgorithmstotrackthemovementofindividualsintheelevatorcar,evenincomplexsituationswithocclusionsandoverlap.
Todetectabnormalbehaviorofpassengers,thebehaviorrecognitionmodelisintroduced.Thismodelrecognizesasetofpredefinedbehaviors,includingaggressivebehavior,suspiciousbehavior,andwanderingbehavior,andtriggersanalarmwhensuchbehaviorsaredetected.Thisgreatlyenhancesthesecurityoftheelevatorcarandhelpstopreventpotentialsafetyhazards.
Thefacedetectionandrecognitionmoduleofthesystemadoptsdeeplearning-basedalgorithms,whicharehighlyaccurateandefficientforidentifyingindividualsinreal-time.Bycomparingthecapturedimagewiththedatabaseofrecordedfaces,thesystemcanaccuratelyidentifyindividualsandprovidenecessaryaccesscontrol.
Experimentalresultsshowthattheproposedcomputervisionsystemhashighaccuracyintargetdetection,tracking,abnormalbehaviorrecognition,andfacerecognitionofpersonnelintheelevatorcar.Thesystemisalsohighlypractical,andhasstrongreliabilityinreal-worldscenarios.
Inconclusion,theproposedcomputervisionsystemoffersgreatpotentialforimprovingsafetyandsecurityinelevatorcars.Thesystemcanalertthesecuritypersonnelinreal-timeandhelppreventdangeroussituations.Thistechnologyopensupnewpossibilitiesforsmartelevatorsystems,whichcanfurtherenhancepassengersafetyandcomfortOnepotentialapplicationofthistechnologyisinhigh-risebuildingswhereelevatorsareacriticalmeansoftransportforpeopleandgoods.Oftensuchbuildingshaverestrictedaccessandstrictsecurityprotocolstopreventunauthorizedentry.Theproposedsystemcanhelpthesecuritypersonneltoautomaticallyidentifypeoplewhoareauthorizedtoaccessthebuildingandflaganysuspiciousactivity.Thiscanhelppreventunauthorizedaccessandpreventsecuritybreaches.
Anotherpotentialbenefitofthistechnologyisinimprovingthecomfortandconvenienceofpassengers.Thesystemcanautomaticallyrecognizefrequentlyusedfloorsandpre-selectthemforthepassengers.Thiscansignificantlyreducewaitingtimesandimprovetheoverallefficiencyoftheelevatorsystem.Additionally,thesystemcanalsotrackelevatorusagepatternsandoptimizetheelevatorservicebasedontheusagedata.Forexample,ifthesystemnoticesthataparticularelevatorishighlyusedduringpeakhours,itcanreroutetheelevatortothefloorwiththehighestdemand.
Overall,theproposedcomputervisionsystemhasthepotentialtorevolutionizethewayweinteractwithelevators.Itcanimprovethesafety,security,andcomfortofpassengerswhilealsoofferingsignificantbenefitstobuildingownersandoperators.Withcontinuedresearchanddevelopment,thistechnologycanhelppavethewayforsmartelevatorsystemsthatarehighlyefficient,safe,andreliableOnepotentialapplicationforcomputervisioninelevatorsisintheareaofpredictivemaintenance.Byconstantlymonitoringtheelevator'scomponentsandsystems,thecomputervisionsystemcandetectanypotentialissuesormalfunctionsbeforetheybecomeseriousproblems.Thiscanhelppreventunexpectedbreakdownsandreducedowntime,whichisespeciallyimportantinhigh-trafficareassuchasofficebuildings,hospitals,andshoppingcenters.
Anotherpotentialbenefitofcomputervisioninelevatorsisintheareaofaccessibility.Elevatorscanbeequippedwithsensorsandcamerasthatdetectthepresenceofpassengersandadjusttheelevator'sbehavioraccordingly.Forexample,ifapassengerwithamobilityimpairmententerstheelevator,thecomputervisionsystemcandetecttheirpresenceandautomaticallyadjusttheelevator'sspeed,acceleration,andbrakingtoensureasmoothandcomfortableride.
Finally,computervisioncanalsobeusedtoimprovetheoveralluserexperienceofelevators.Forexample,thesystemcandetectpassengerpreferencesandadjustthelighting,temperature,andmusicaccordingly.Itcanalsoprovidereal-timeinformationaboutwaittimes,elevatorcapacity,andupcomingfloors,whichcanhelpreducepassengeranxietyandimproveoverallsatisfaction.
Inconclusion,computervisionhasthepotentialtorevolutionizethewayweinteractwithelevators.Fromimprovingsafetyandsecuritytoenhancin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省安全生产管理
- 医院消防安全巡查记录表范本
- 电解车间安全培训内容
- 安全生产隐患排查会议记录
- 2025年多功能气象卫星接收系统项目立项申请报告
- 2025至2030智能照明传感器芯片行业发展趋势分析与未来投资战略咨询研究报告
- 支持县域经济发展的财税政策研究
- 2025至2030网上高等教育行业产业运行态势及投资规划深度研究报告
- 2025至2030鲨鱼软骨制品行业产业运行态势及投资规划深度研究报告
- 2025年浙江医疗卫生招聘金华职业技术大学附属医院招聘高层次人才19人笔试历年专业考点(难、易错点)附带答案详解
- 康复设备及器材供货安装及售后服务方案
- 【教育数字化应用案例】初中物理教育数字化应用案例
- 2023-2024学年北师大版八年级下册期末数学试卷2(考试版)
- 小学五年级第一学期体育教案(新版)
- 北京市西城区2021-2022学年八年级下学期期末历史试题(试题+答案)
- 土地综合整治项目施工组织设计
- 大疆无人机租赁合同协议书
- HG∕T 4592-2014 离子膜法金属阳极电解槽电极活性层
- 订婚解除婚约协议书模板
- 进入车间管理制度
- 急性肝衰竭的护理查房
评论
0/150
提交评论