版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于计算机视觉的电梯轿厢智能监控系统的研究与设计基于计算机视觉的电梯轿厢智能监控系统的研究与设计
摘要
为了保障人们的生命财产安全,电梯轿厢监控系统逐渐变成一个重要的场所监控领域。本文提出了一种基于计算机视觉的电梯轿厢智能监控系统,该系统可以实现电梯轿厢内的目标检测、跟踪、异常行为检测和人脸识别等功能,有效地提高了电梯轿厢的安全性和管理水平。
本文首先介绍了电梯轿厢监控系统的研究背景和现状。然后,针对目标检测和跟踪问题,提出了基于深度学习的目标检测器YOLOv3和基于卡尔曼滤波的目标跟踪算法。针对异常行为检测问题,提出了基于深度学习的行为识别模型和基于分类器的异常行为检测方法。针对人脸识别问题,提出了基于深度学习的人脸检测和识别模型。
最后,本文设计和实现了一个基于计算机视觉的电梯轿厢智能监控系统原型。该系统采用了基于深度学习的目标检测器YOLOv3、基于卡尔曼滤波的目标跟踪算法、基于行为识别模型的异常行为检测和基于深度学习的人脸检测和识别模型等技术。实验结果表明:本系统可以有效地实现电梯轿厢内人员目标检测、跟踪、异常行为检测和人脸识别等功能,具有较高的实用性和可靠性。
关键词:电梯轿厢,计算机视觉,目标检测,目标跟踪,异常行为检测,人脸识别
Abstract
Inordertoensurethesafetyofpeople'slivesandproperty,theelevatorcarmonitoringsystemhasgraduallybecomeanimportantplacemonitoringfield.Thispaperproposesacomputervision-basedintelligentmonitoringsystemforelevatorcars,whichcanrealizefunctionssuchastargetdetection,tracking,abnormalbehaviordetectionandfacerecognitionintheelevatorcar,effectivelyimprovingthesafetyandmanagementleveloftheelevatorcar.
Thispaperfirstintroducestheresearchbackgroundandstatusoftheelevatorcarmonitoringsystem.Then,forthetargetdetectionandtrackingproblems,adeeplearning-basedtargetdetectorYOLOv3andaKalmanfilter-basedtargettrackingalgorithmareproposed.Fortheabnormalbehaviordetectionproblem,abehaviorrecognitionmodelbasedondeeplearningandaclassifier-basedabnormalbehaviordetectionmethodareproposed.Forthefacerecognitionproblem,adeeplearning-basedfacedetectionandrecognitionmodelisproposed.
Finally,thispaperdesignsandimplementsaprototypeofacomputervision-basedintelligentmonitoringsystemforelevatorcars.Thesystemadoptstechnologiessuchasadeeplearning-basedtargetdetectorYOLOv3,aKalmanfilter-basedtargettrackingalgorithm,anabnormalbehaviordetectionbasedonbehaviorrecognitionmodel,andadeeplearning-basedfacedetectionandrecognitionmodel.Experimentalresultsshowthatthesystemcaneffectivelyachievefunctionssuchastargetdetection,tracking,abnormalbehaviordetectionandfacerecognitionofpersonnelintheelevatorcar,andhashighpracticalityandreliability.
Keywords:elevatorcar,computervision,targetdetection,targettracking,abnormalbehaviordetection,facerecognitioTheproposedcomputervisionsystemforelevatorcarsiscomposedofmultiplemodulesincludingtargetdetection,targettracking,abnormalbehaviordetection,andfacerecognition.Thesystemutilizesalightweightandefficienttargetdetectionalgorithm,whichcanquicklydetectandlocatetheelevatorpassengers.Thetargettrackingmoduleusesadvancedalgorithmstotrackthemovementofindividualsintheelevatorcar,evenincomplexsituationswithocclusionsandoverlap.
Todetectabnormalbehaviorofpassengers,thebehaviorrecognitionmodelisintroduced.Thismodelrecognizesasetofpredefinedbehaviors,includingaggressivebehavior,suspiciousbehavior,andwanderingbehavior,andtriggersanalarmwhensuchbehaviorsaredetected.Thisgreatlyenhancesthesecurityoftheelevatorcarandhelpstopreventpotentialsafetyhazards.
Thefacedetectionandrecognitionmoduleofthesystemadoptsdeeplearning-basedalgorithms,whicharehighlyaccurateandefficientforidentifyingindividualsinreal-time.Bycomparingthecapturedimagewiththedatabaseofrecordedfaces,thesystemcanaccuratelyidentifyindividualsandprovidenecessaryaccesscontrol.
Experimentalresultsshowthattheproposedcomputervisionsystemhashighaccuracyintargetdetection,tracking,abnormalbehaviorrecognition,andfacerecognitionofpersonnelintheelevatorcar.Thesystemisalsohighlypractical,andhasstrongreliabilityinreal-worldscenarios.
Inconclusion,theproposedcomputervisionsystemoffersgreatpotentialforimprovingsafetyandsecurityinelevatorcars.Thesystemcanalertthesecuritypersonnelinreal-timeandhelppreventdangeroussituations.Thistechnologyopensupnewpossibilitiesforsmartelevatorsystems,whichcanfurtherenhancepassengersafetyandcomfortOnepotentialapplicationofthistechnologyisinhigh-risebuildingswhereelevatorsareacriticalmeansoftransportforpeopleandgoods.Oftensuchbuildingshaverestrictedaccessandstrictsecurityprotocolstopreventunauthorizedentry.Theproposedsystemcanhelpthesecuritypersonneltoautomaticallyidentifypeoplewhoareauthorizedtoaccessthebuildingandflaganysuspiciousactivity.Thiscanhelppreventunauthorizedaccessandpreventsecuritybreaches.
Anotherpotentialbenefitofthistechnologyisinimprovingthecomfortandconvenienceofpassengers.Thesystemcanautomaticallyrecognizefrequentlyusedfloorsandpre-selectthemforthepassengers.Thiscansignificantlyreducewaitingtimesandimprovetheoverallefficiencyoftheelevatorsystem.Additionally,thesystemcanalsotrackelevatorusagepatternsandoptimizetheelevatorservicebasedontheusagedata.Forexample,ifthesystemnoticesthataparticularelevatorishighlyusedduringpeakhours,itcanreroutetheelevatortothefloorwiththehighestdemand.
Overall,theproposedcomputervisionsystemhasthepotentialtorevolutionizethewayweinteractwithelevators.Itcanimprovethesafety,security,andcomfortofpassengerswhilealsoofferingsignificantbenefitstobuildingownersandoperators.Withcontinuedresearchanddevelopment,thistechnologycanhelppavethewayforsmartelevatorsystemsthatarehighlyefficient,safe,andreliableOnepotentialapplicationforcomputervisioninelevatorsisintheareaofpredictivemaintenance.Byconstantlymonitoringtheelevator'scomponentsandsystems,thecomputervisionsystemcandetectanypotentialissuesormalfunctionsbeforetheybecomeseriousproblems.Thiscanhelppreventunexpectedbreakdownsandreducedowntime,whichisespeciallyimportantinhigh-trafficareassuchasofficebuildings,hospitals,andshoppingcenters.
Anotherpotentialbenefitofcomputervisioninelevatorsisintheareaofaccessibility.Elevatorscanbeequippedwithsensorsandcamerasthatdetectthepresenceofpassengersandadjusttheelevator'sbehavioraccordingly.Forexample,ifapassengerwithamobilityimpairmententerstheelevator,thecomputervisionsystemcandetecttheirpresenceandautomaticallyadjusttheelevator'sspeed,acceleration,andbrakingtoensureasmoothandcomfortableride.
Finally,computervisioncanalsobeusedtoimprovetheoveralluserexperienceofelevators.Forexample,thesystemcandetectpassengerpreferencesandadjustthelighting,temperature,andmusicaccordingly.Itcanalsoprovidereal-timeinformationaboutwaittimes,elevatorcapacity,andupcomingfloors,whichcanhelpreducepassengeranxietyandimproveoverallsatisfaction.
Inconclusion,computervisionhasthepotentialtorevolutionizethewayweinteractwithelevators.Fromimprovingsafetyandsecuritytoenhancin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铁路安全宣传课件新朗博
- 未来五年资源与产权交易服务企业数字化转型与智慧升级战略分析研究报告
- 未来五年桂花企业县域市场拓展与下沉战略分析研究报告
- 未来五年内燃机控制器企业县域市场拓展与下沉战略分析研究报告
- 未来五年猪配合饲料企业县域市场拓展与下沉战略分析研究报告
- 未来五年摄影服务企业县域市场拓展与下沉战略分析研究报告
- 未来五年地下水资源地质勘查服务企业数字化转型与智慧升级战略分析研究报告
- 未来五年城市道路、广场草坪维护服务企业ESG实践与创新战略分析研究报告
- 湖北随州安全生产培训课件
- 将经验总结转化为制度规范
- 2025年宪法知识题库及参考答案综合卷
- 2026年社区工作者考试题库300道(有一套)
- 2026年福建省能源石化集团有限责任公司招聘备考题库及答案详解一套
- 2025年家庭投资理财规划:科学配置与稳健增值指南
- 杜氏肌营养不良运动功能重建方案
- 2026贵州大数据产业集团有限公司第一次招聘155人模拟笔试试题及答案解析
- 肿瘤药物给药顺序课件
- 海南计算机与科学专升本试卷真题及答案
- 企业安全一把手授课课件
- 学校中层干部述职报告会
- 音乐疗法对焦虑缓解作用-洞察及研究
评论
0/150
提交评论