晶粒组织的三维模型构建与定量表征研究_第1页
晶粒组织的三维模型构建与定量表征研究_第2页
晶粒组织的三维模型构建与定量表征研究_第3页
晶粒组织的三维模型构建与定量表征研究_第4页
晶粒组织的三维模型构建与定量表征研究_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

晶粒组织的三维模型构建与定量表征研究摘要:

晶粒组织是材料微结构中最基本、最重要的特征之一。构建晶粒组织的三维模型并对其进行定量表征具有理论和工程实践价值。本文基于计算机图像处理技术,提出了一种晶体结构三维重建方法,将二维显微镜图像转化为三维晶粒组织模型。接着我们与传统手工重建方法做了对比,其中包括空间点云重建、Delaunay三角剖分、以及直接点扩散法,结果表明本文提出的方法具有更高的重建精度和鲁棒性。针对三维晶粒组织模型,我们采用网络结构基于图卷积神经网络的无监督拓扑学习方法,自动挖掘模型中晶粒之间的拓扑关系,并进行拓扑性质的特征提取和表征。最后,通过应用所提出的方法于高熵合金晶粒组织的重建和表征,得到了高质量的三维模型和更为精确的定量特征,验证了方法的有效性和优越性。因此,该方法可以应用于材料科学领域中各类材料的晶粒组织重建和表征研究。

关键词:晶粒组织;计算机图像处理;三维构建;表征研究;图卷积神经网络。

Abstract:

Grainmicrostructureisoneofthemostfundamentalandcriticalfeaturesinmaterialmicrostructure.Constructingathree-dimensionalmodelofgrainmicrostructureandquantitativelycharacterizingithavetheoreticalandengineeringvalue.Inthispaper,athree-dimensionalreconstructionmethodofcrystalstructureisproposedbasedoncomputerimageprocessingtechnology,whichcanconverttwo-dimensionalmicroscopicimagesintothree-dimensionalgrainmicrostructuremodels.Thenwecompareditwithtraditionalmanualreconstructionmethods,includingspacepointcloudreconstruction,Delaunaytriangulation,anddirectpointdiffusionmethod.Theresultsshowthattheproposedmethodhashigherreconstructionaccuracyandrobustness.Basedonthegeneratedthree-dimensionalgrainmicrostructuremodel,weemployagraphconvolutionalneuralnetwork(GCN)basedunsupervisedtopologicallearningmethodtoautomaticallyminethetopologicalrelationshipsamonggrainboundariesinthemodelandextractandcharacterizetopologicalproperties.Finally,themethodwasappliedtothereconstructionandcharacterizationofhigh-entropyalloygrainmicrostructure,resultinginhigh-qualitythree-dimensionalmodelsandmoreaccuratequantitativeproperties,whichhasshowntheeffectivenessandsuperiorityoftheproposedmethod.Therefore,thismethodcanbeappliedtothereconstructionandcharacterizationofgrainmicrostructureinvariousmaterialssciencefields.

Keywords:grainmicrostructure;computerimageprocessing;three-dimensionalreconstruction;characterizationresearch;graphconvolutionalneuralnetworkInrecentyears,thestudyofmicrostructurehasbecomeincreasinglyimportantinthefieldofmaterialsscience.Grainmicrostructureisoneoftheimportantmicrostructuresinmetallicmaterials,anditscharacterizationandreconstructionhavegreatsignificancefortheresearchofmaterialpropertiesandpropertiesoptimization.

Computerimageprocessingtechnologyhasbeenwidelyusedinthefieldofmicrostructureanalysis.However,thetraditionaltwo-dimensionalimageanalysismethodshavelimitationsindescribingthecomplexthree-dimensionalmicrostructure.Withthedevelopmentofthree-dimensionalreconstructiontechnology,thereconstructionandcharacterizationofgrainmicrostructurehavebeengreatlyimproved.

Graphconvolutionalneuralnetwork,asanewtypeofdeeplearningalgorithm,hasshownapowerfulabilitytoprocessdataingraphstructure.Byusingthismethod,researcherscanextractthefeaturesofthegrainmicrostructureinthree-dimensionalspace,andproducehigh-qualitythree-dimensionalmodels.

Intheapplicationofthismethod,researcherscanobtaintheoriginalimageofthegrainmicrostructurethroughamicroscope,andusecomputerimageprocessingtechnologytopreprocesstheimage.Then,theycanconstructathree-dimensionalgraphstructurebasedontheimagedata,andusegraphconvolutionalneuralnetworktorealizethereconstructionandcharacterizationofgrainmicrostructure.

Theapplicationofthismethodhasbeendemonstratedinthereconstructionandcharacterizationofgrainmicrostructureinvariousmetallicmaterials.Theresultsshowthatthethree-dimensionalmodelsobtainedbythismethodaremoreaccurateandreliablethantraditionalmethods.Therefore,thismethodhasbroadapplicationprospectsinthefieldofmaterialsscienceMoreover,thegraphconvolutionalneuralnetworkmethodcanalsobeextendedtostudytheevolutionofgrainmicrostructureduringmaterialsprocessing.Byusinginsituobservationsandsimulations,theevolutionofthegrainmicrostructurecanbecapturedandanalyzed.Thiscanprovideimportantinsightsintothemechanismsofgraingrowth,recrystallization,andtextureevolutioninmetallicmaterials.

Inaddition,thegraphconvolutionalneuralnetworkmethodcanalsobecombinedwithotheradvancedcharacterizationtechniques,suchaselectronbackscatterdiffraction(EBSD)andX-raydiffraction(XRD),tofurtherimprovetheaccuracyandreliabilityofgrainmicrostructurecharacterization.Forexample,byintegratingEBSDdatawiththree-dimensionalmodelsobtainedbygraphconvolutionalneuralnetwork,thelocalorientationandmisorientationdistributionofgrainscanbeanalyzedindetail.

Overall,thegraphconvolutionalneuralnetworkmethodisapowerfultoolforthereconstructionandcharacterizationofgrainmicrostructureinmetallicmaterials.Itsabilitytocapturecomplexspatialcorrelationsandtopologicalstructuresofgrainmicrostructuremakeitsuperiortotraditionalmethods.Withthedevelopmentofhigh-performancecomputingandadvancedimagingtechniques,webelievethatthismethodwillplayanincreasinglyimportantroleinthefieldofmaterialsscienceInadditiontoitsapplicationinthereconstructionandcharacterizationofgrainmicrostructure,thegraphconvolutionalneuralnetwork(GCNN)methodhasalsoshowngreatpotentialinotherareasofmaterialsscience.

OnepromisingapplicationofGCNNisinthepredictionofmaterialproperties.BytrainingaGCNNonalargedatasetofmaterialswithknownproperties,thenetworkcanlearntopredictthepropertiesofnewmaterialsbasedontheirstructuralfeatures.Thisapproachhasbeenusedtopredictthemechanicalandthermalpropertiesofvariousmaterials,includingmetals,ceramics,andpolymers.

AnotherareawhereGCNNhasshownpromiseisintheanalysisofmoleculardynamicssimulations.Moleculardynamicssimulationsarewidelyusedtostudythebehaviorofatomsandmoleculesinmaterials,butanalyzingthevastamountsofdatageneratedbythesesimulationscanbechallenging.GCNNcanbeusedtoextractrelevantfeaturesfromthesimulationdataandidentifypatternsandcorrelationsthatwouldbedifficulttodetectusingtraditionalmethods.

GCNNhasalsobeenusedtoanalyzeanddesignnewmaterialsatthenanoscale.Byincorporatingfeaturessuchassurfacearea,poresize,andnanoparticleshapeintothenetwork,GCNNcanbeusedtopredicttheperformanceofmaterialsinapplicationssuchascatalysis,energystorage,anddrugdelivery.

Overall,thegraphconvolutionalneural

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论