




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020-2021学年第一学期期末测试北师大版八年级数学试题一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.9的平方根是()A.3 B. C. D.2.下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.1,,23.下列四个命题中,真命题有两条直线被第三条直线所截,内错角相等;如果和是对顶角,那么;三角形的一个外角大于任何一个内角;若,则.A.1个 B.2个 C.3个 D.4个4.直线过点,,则的值是()A. B. C. D.5.将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是()A.45°B.50°C.60°D.75°6.《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:今有甲乙二人,不知其钱包里有多少钱,若乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x,乙持钱为y,则可列方程组A. B. C. D.7.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数 B.中位数 C.众数 D.方差8.已知函数的部分函数值如下表所示,则该函数的图象不经过()…-2-101……0369…A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,已知OA=OB,点C在OA上,点D在OB上,OC=OD,AD与BC相交于点E,那么图中全等的三角形共有( )A.2对 B.3对 C.4对 D.5对10.1876年,美国总统Garfield用如图所示的两个全等的直角三角形证明了勾股定理,若图中,,,则下面结论错误的是()A. B. C. D.是等腰直角三角形二、填空题(共4小题,每题3分,满分12分,将答案填在答题纸上)11.比较大小:_____.12.如图,已知,直线分别交,于点,,平分,若,则的度数为__________.13.以方程组的解为坐标的点在第__________象限.14.如图,在长方形纸片中,,,拆叠纸片,使顶点落在边上的点处,折痕分别交边、于点、,则的面积最大值是__________.三、解答题:共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.15.计算:(1)(2)16.解二元一次方程组:17.已知在平面直角坐标系中有三点、,.请回答如下问题:(1)在平面直角坐标系内描出点、、的位置,并求的面积;(2)在平面直角坐标系中画出,使它与关于轴对称,并写出三顶点的坐标;(3)若是内部任意一点,请直接写出这点在内部的对应点的坐标.18.如图,是等边三角形,、、分别是、、上一点,且.(1)若,求;(2)如图2,连接,若,求证:.19.某居民小区为了绿化小区环境,建设和谐家园,准备将一块周长为76米长方形空地,设计成长和宽分别相等的9块小长方形,如图所示,计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?20.节约用水是我们的美德,水龙头关闭不严会造成滴水,容器内盛水与滴水时间的关系用可以显示水量的容器做如图的试验,并根据试验数据绘制出如图的函数图象,结合图象解答下列问题.()容器内原有水多少升.()求与之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升.21.如图,在中,,,点在上,且,.(1)求证:;(2)求的长.22.第16届省运会在我市隆重举行,推动了我市各校体育活动如火如荼的开展,在某校射箭队的一次训练中,甲,乙两名运动员前5箭的平均成绩相同,教练将两人的成绩绘制成如下尚不完整的统计图表.乙运动员成绩统计表(单位:环)第1次第2次第3次第4次第5次81086(1)甲运动员前5箭射击成绩的众数是环,中位数是环;(2)求乙运动员第5次的成绩;(3)如果从中选择一个成绩稳定运动员参加全市中学生比赛,你认为应选谁去?请说明理由.23.爸爸想送小明一个书包和一辆自行车作为新年礼物,在甲、乙两商场都发现同款自行车单价相同,书包单价也相同,自行车和书包单价之和为452元,且自行车的单价比书包的单价4倍少8元.(1)求自行车和书包单价各为多少元;(2)新年来临赶上商家促销,乙商场所有商品打八五折(即8.5折)销售,甲全场购物毎满100元返购物券30元(即不足100元不返券,满100元送30元购物券,满200元送60元购物券),并可当场用于购物,购物券全场通用.但爸爸只带了400元钱,如果他只在同一家商场购买看中的两样物品,在哪一家买更省钱?24.如图,直线与轴、轴分别相交于点、,与直线相交于点.(1)求点坐标;(2)如果在轴上存在一点,使是以为底边等腰三角形,求点坐标;(3)在直线上是否存在点,使面积等于6?若存在,请求出点的坐标,若不存在,请说明理由.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.9的平方根是()A.3 B. C. D.【答案】C【解析】【分析】根据平方根的定义可得.【详解】解:∵,∴9的平方根是,故答案为:C【点睛】本题考查了平方根的定义,掌握一个正数的平方根有两个,且互为相反数是解题的关键.2.下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.1,,2【答案】D【解析】【分析】根据勾股定理逆定理判断即可.【详解】解:1+2=3,A不能构成三角形;22+32≠42,B不能构成直角三角形;42+52≠62,C不能构成直角三角形;12+()2=22,D能构成直角三角形;故选D.【点睛】本题考查了能构成直角三角形的三边关系,解题的关键是掌握勾股定理.3.下列四个命题中,真命题有两条直线被第三条直线所截,内错角相等;如果和是对顶角,那么;三角形的一个外角大于任何一个内角;若,则.A.1个 B.2个 C.3个 D.4个【答案】A【解析】两条平行线被第三条直线所截,内错角相等,故①是假命题;如果∠1和∠2是对顶角,那么∠1=∠2,②是真命题;三角形的一个外角大于任何一个不相邻的内角,③是假命题;若a2=b2,则a=±b,④是假命题,故选A.4.直线过点,,则值是()A. B. C. D.【答案】B【解析】【分析】分别将点,代入即可计算解答.【详解】解:分别将点,代入,得:,解得,故答案为:B.【点睛】本题考查了待定系数法求正比例函数解析式,将点的坐标代入解析式解方程是解题的关键.5.将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是()A.45°B.50°C.60°D.75°【答案】D【解析】本题主要根据直角尺各角的度数及三角形内角和定理解答.解:∵∠C=30°,∠DAE=45°,AE∥BC,∴∠EAC=∠C=30°,∠FAD=45﹣30=15°,在△ADF中根据三角形内角和定理得到:∠AFD=180﹣90﹣15=75°.故选D.6.《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:今有甲乙二人,不知其钱包里有多少钱,若乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x,乙持钱为y,则可列方程组A. B. C. D.【答案】B【解析】【分析】由乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的给乙,则乙的钱数也能为50,列出方程组求解即可.【详解】解:由题意得:,故选B.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是理解题意列出方程组.7.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数 B.中位数 C.众数 D.方差【答案】B【解析】【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【详解】11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.8.已知函数的部分函数值如下表所示,则该函数的图象不经过()…-2-101……0369…A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D【解析】【分析】根据点的坐标,利用待定系数法可求出一次函数解析式,再利用一次函数图象与系数的关系可得出一次函数y=3x+6的图象经过第一、二、三象限,此题得解.【详解】解:将(-2,0),(-1,3)代入y=kx+b,得:,
解得:,
∴一次函数的解析式为y=3x+6.
∵3>0,6>0,
∴一次函数y=3x+6的图象经过第一、二、三象限.
故选D.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数图象与系数的关系,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.9.如图,已知OA=OB,点C在OA上,点D在OB上,OC=OD,AD与BC相交于点E,那么图中全等的三角形共有( )A.2对 B.3对 C.4对 D.5对【答案】C【解析】【分析】首先根据OA=OB,∠AOD=∠BOC,OC=OD,证明△AOD≌△BOC,然后依次证明△AEC≌△BED、△OCE≌△ODE、△OEB≌△OEA.【详解】∵OA=OB,OC=OD,又∠AOB=∠BOA,∴△AOD≌△BOC,∠A=∠B,又AC+OC=BD+OD,∴AC=BD,∴△AEC≌△BED,进一步可得△OCE≌△ODE、△OEB≌△OEA,共4对.故选C.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时,从已知开始结合全等的判定方法由易到难逐个找寻,要不重不漏.10.1876年,美国总统Garfield用如图所示的两个全等的直角三角形证明了勾股定理,若图中,,,则下面结论错误的是()A. B. C. D.是等腰直角三角形【答案】C【解析】【分析】由全等三角形的性质可得AB=EC=a,BE=CD=b,AE=DE,∠AEB=∠EDC,可求∠AED=90°,且AE=DE,即AE=DE=4,即可判断各个选项.【详解】解:∵△ABE≌△ECD
∴AB=EC=a,BE=CD=b,AE=DE,∠AEB=∠EDC,
∵∠EDC+∠DEC=90°
∴∠AEB+∠DEC=90°
∴∠AED=90°,且AE=DE,
∴△ADE是等腰直角三角形,AE2+DE2=AD2=32,
∴AE=4=DE,
∴AB2+BE2=AE2,
∴a2+b2=16,
故A、B、D选项正确
∵S△ADE=AE×DE=8
故C选项错误
故选C.【点睛】本题考查了全等三角形性质,勾股定理,等腰直角三角形的性质,熟练运用全等三角形的性质是本题的关键.二、填空题(共4小题,每题3分,满分12分,将答案填在答题纸上)11.比较大小:_____.【答案】>【解析】【分析】首先求出、的平方各是多少;然后判定出所给的两个数的平方的大小关系,即可判断出两个数的大小关系.【详解】解:∵7>7,∴>.故答案为>.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是判定出所给的两个数的平方的大小关系.12.如图,已知,直线分别交,于点,,平分,若,则的度数为__________.【答案】【解析】【分析】先由AB∥CD得出∠1+∠BEF=180°,∠2=∠BEG,再根据角平分线及∠1的度数求出∠BEG的度数即可.【详解】解:∵AB∥CD,∴∠1+∠BEF=180°,∠2=∠BEG又∵∠1=50°,∴∠BEF=130°,又∵EG平分∠BEF,∴∠FEG=∠BEG=65°,∴∠2=∠BEG=65°故答案为:65°.【点睛】本题考查了角平分线的定义、平行线的性质,解题的关键是求出∠BEF的度数.13.以方程组的解为坐标的点在第__________象限.【答案】三【解析】【分析】解出x,y的值,再通过符号判断出在第几象限即可.【详解】解:由方程组可得,根据第三象限点的特点可知,点(-1,-1)在第三象限,故答案为:三.【点睛】本题考查了二元一次方程组的解法及直角坐标系中各象限点的坐标特点,解题的关键是熟记各象限点的坐标特点.14.如图,在长方形纸片中,,,拆叠纸片,使顶点落在边上的点处,折痕分别交边、于点、,则的面积最大值是__________.【答案】7.5【解析】【分析】当点G与点A重合时,面积最大,根据折叠的性质可得GF=FC,∠AFE=∠EFC,根据勾股定理可求出AF=5,再根据矩形的性质得出∠EFC=∠AEF=∠AFE,可得AE=AF=5,即可求出△GEF的面积最大值.【详解】解:如下图,当点G与点A重合时,面积最大,由折叠的性质可知,GF=FC,∠AFE=∠EFC,在Rt△ABF中,,∴解得:AF=5,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF=∠CFE,∴∠AEF=∠AFE∴AE=AF=5,∴△GEF的面积最大值为:,故答案为:7.5.【点睛】本题考查了矩形中的折叠问题,涉及矩形的性质、勾股定理的应用,解题的关键是找到面积最大时的位置,灵活运用矩形的性质.三、解答题:共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.15.计算:(1)(2)【答案】(1)2;(2)【解析】【分析】(1)根据二次根式的乘法法则运算即可;(2)根据二次根式的运算法则及负整数指数的运算法则即可.【详解】解:(1)原式(2)原式【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的运算法则.16.解二元一次方程组:【答案】.【解析】【分析】将方程组整理成一般式,再利用加减消元法求解可得.【详解】方程组整理,得:,①+②,得:3x=9,解得x=3,将x=3代入①,得:3+3y=-9,解得:y=-4,则方程组的解为.【点睛】本题考查了解二元一次方程组.这类题目的解题关键是掌握方程组解法中的加减消元法和代入法.17.已知在平面直角坐标系中有三点、,.请回答如下问题:(1)在平面直角坐标系内描出点、、的位置,并求的面积;(2)在平面直角坐标系中画出,使它与关于轴对称,并写出三顶点的坐标;(3)若是内部任意一点,请直接写出这点在内部的对应点的坐标.【答案】(1)图见解析,5;(2)图见解析,、、;(3)【解析】【分析】(1)根据点的坐标描出点,根据三角形面积的求法即可求出面积;(2)根据关于x轴对称的点的特征,描出点、、的对应点,连线即可;(3)根据点M与点关于x轴对称即可得.【详解】解:(1)如图所示,点、、位置即为所求依题意,得轴,且,(2)如图所示,即为所求、、(3)∵与关于x轴对称,∴关于x轴对称的点为,故答案为:【点睛】本题考查了直角坐标系中画轴对称图形问题及三角形的面积的求解,解题的关键是熟知关于x轴对称的点的特征.18.如图,是等边三角形,、、分别是、、上一点,且.(1)若,求;(2)如图2,连接,若,求证:.【答案】(1);(2)见解析【解析】【分析】(1)根据等边三角形的性质角度运算即可得出,从而得到即可;(2)由平行可知,再由三角形的内角和运算即可得.【详解】解:(1)∵是等边三角形.∴,∵,,∴,∴.(2)∵,∴,∵,,,,∴.【点睛】本题考查了等边三角形的性质及三角形内角和,解题的关键是掌握相应的性质,并对角度进行运算.19.某居民小区为了绿化小区环境,建设和谐家园,准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示,计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?【答案】要完成这块绿化工程,预计花费75600元.【解析】【分析】设小长方形的长为x米,宽为y米,根据大长方形周长为76米,小长方形宽的5倍等于长的2倍,据此列方程组求解,然后求出面积,最终求得花费.【详解】设小长方形的长为x米,宽为y米,由题意得,,解得:,则大长方形的长为20米,宽为18米,面积为:20×18=360平方米,预计花费为:210×360=75600(元),答:要完成这块绿化工程,预计花费75600元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,根据图形,设出未知数,找出合适的等量关系,列方程组求解.20.节约用水是我们的美德,水龙头关闭不严会造成滴水,容器内盛水与滴水时间的关系用可以显示水量的容器做如图的试验,并根据试验数据绘制出如图的函数图象,结合图象解答下列问题.()容器内原有水多少升.()求与之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升.【答案】()容器的原有水;()一天滴水量为.【解析】试题分析:(1)由图象可知,当t=0时,w=0.3,即容器内原有水0.3升;(2)设w与t之间的函数关系式为w=kt+b,将(0,0.3),(1.5,0.9)代入,即可求出w与t之间的函数关系式;由解析式可知,每小时滴水量为0.4L,一天的滴水量为:0.4×24=9.6L.试题解析:(1)根据图象可知,t=0时,w=0.3,即容器内原有水0.3升;(2)设w与t之间的函数关系式为w=kt+b,将(0,0.3),(1.5,0.9)代入,得:,解得:,故w与t之间的函数关系式为w=0.4t+0.3;由解析式可知,每小时滴水量为0.4L,一天的滴水量为:0.4×24=9.6L,即在这种滴水状态下一天的滴水量是9.6升.考点:一次函数的应用.21.如图,在中,,,点在上,且,.(1)求证:;(2)求的长.【答案】(1)详见解析;(2).【解析】【分析】(1)在△BDC中,利用勾股定理的逆定理判定该三角形是直角三角形,且∠CDB=90°(2)在直角△ACD中,由勾股定理求得AC的值【详解】(1)证明:在中,,,,..是直角三角形,且,.(2)解:由(1)知,.,,.在中,,.的长为.【点睛】本题考查了勾股定理的逆定理和勾股定理,通过审题把题目中的条件进行转化,是解题的关键.22.第16届省运会在我市隆重举行,推动了我市各校体育活动如火如荼的开展,在某校射箭队的一次训练中,甲,乙两名运动员前5箭的平均成绩相同,教练将两人的成绩绘制成如下尚不完整的统计图表.乙运动员成绩统计表(单位:环)第1次第2次第3次第4次第5次81086(1)甲运动员前5箭射击成绩的众数是环,中位数是环;(2)求乙运动员第5次的成绩;(3)如果从中选择一个成绩稳定的运动员参加全市中学生比赛,你认为应选谁去?请说明理由.【答案】(1)9,9;(2)乙运动员第5次的成绩是8环;(3)应选乙运动员去参加比赛,理由见解析.【解析】【分析】(1)根据众数和中位数的定义分别进行解答即可得出答案;
(2)先算出甲运动员5次的总成绩,再根据甲、乙两名运动员前5箭的平均成绩相同,即可求出乙运动员第5次的成绩;
(3)根据方差公式先求出甲和乙的方差,再根据方差的意义即可得出答案.【详解】(1)∵9环出现了两次,出现的次数最多,则甲运动员前5箭射击成绩的众数是9环;
把这些数从小到大排列为:5,7,9,9,10,最中间的数是9,则中位数是9环;
故答案为9,9;(2),∵甲、乙两名运动员前5箭的平均成绩相同,∴.解得.(或)∴乙运动员第5次的成绩是8环.(3)应选乙运动员去参加比赛.理由:∵(环),(环),∴,.∵,∴应选乙运动员去参加比赛.【点睛】本题考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.23.爸爸想送小明一个书包和一辆自行车作为新年礼物,在甲、乙两商场都发现同款的自行车单价相同,书包单价也相同,自行车和书包单价之和为452元,且自行车的单价比书包的单价4倍少8元.(1)求自行车和书包单价各为多少元;(2)新年来临赶上商家促销,乙商场所有商品打八五折(即8.5折)销售,甲全场购物毎满100元返购物券30元(即不足100元不返券,满100元送30元购物券,满200元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陕西理工大学《工程力学III》2023-2024学年第一学期期末试卷
- 江西软件职业技术大学《调研方法与研报告写作》2023-2024学年第一学期期末试卷
- 安顺学院《学校体育竞赛组织与管理》2023-2024学年第一学期期末试卷
- 赤峰工业职业技术学院《智能医药图像处理》2023-2024学年第一学期期末试卷
- 生物发酵处理工艺-洞察及研究
- 山东理工职业学院《日本文学(1-2)》2023-2024学年第一学期期末试卷
- 伴侣共治模式-洞察及研究
- 金山职业技术学院《新能源科学与工程专业英语》2023-2024学年第一学期期末试卷
- 西京学院《大学体育Ⅱ健美操》2023-2024学年第一学期期末试卷
- 湖南电气职业技术学院《摄影基础》2023-2024学年第一学期期末试卷
- 浙江省温州市鹿城区2023-2024学年八年级下学期科学期末质量检测综合模拟卷
- 大树吊装专项施工方案
- (XX)XX县2021年度变更调查技术设计书
- 地震的应急逃生知识
- 药品配送服务应急预案
- 03 配电类“两种人”安规综合能力测试题库
- 人工智能伦理导论- 课件 第3、4章 人工智能伦理、人工智能风险
- 工业管道技术交底
- 危化品安全管理培训模板如何正确穿戴和使用防护装备
- 基于单片机的多路数据采集系统设计(附源程序及原理图)
- 《跨部门沟通与协调》课件
评论
0/150
提交评论