![江苏盐城市时杨中学2023年数学高一下期末考试试题含解析_第1页](http://file4.renrendoc.com/view/c74dc7b6a41bebade7053a6657610586/c74dc7b6a41bebade7053a66576105861.gif)
![江苏盐城市时杨中学2023年数学高一下期末考试试题含解析_第2页](http://file4.renrendoc.com/view/c74dc7b6a41bebade7053a6657610586/c74dc7b6a41bebade7053a66576105862.gif)
![江苏盐城市时杨中学2023年数学高一下期末考试试题含解析_第3页](http://file4.renrendoc.com/view/c74dc7b6a41bebade7053a6657610586/c74dc7b6a41bebade7053a66576105863.gif)
![江苏盐城市时杨中学2023年数学高一下期末考试试题含解析_第4页](http://file4.renrendoc.com/view/c74dc7b6a41bebade7053a6657610586/c74dc7b6a41bebade7053a66576105864.gif)
![江苏盐城市时杨中学2023年数学高一下期末考试试题含解析_第5页](http://file4.renrendoc.com/view/c74dc7b6a41bebade7053a6657610586/c74dc7b6a41bebade7053a66576105865.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=4A.2kπ+π6C.2kπ+π122.在中,,BC边上的高等于,则()A. B. C. D.3.对于函数f(x)=2sinxcosx,下列选项中正确的是()A.f(x)在(,)上是递增的 B.f(x)的图象关于原点对称C.f(x)的最小正周期为 D.f(x)的最大值为24.已知扇形的圆心角,弧长为,则该扇形的面积为()A. B. C.6 D.125.如图,长方体的体积为,E为棱上的点,且,三棱锥E-BCD的体积为,则=()A. B. C. D.6.平面平面,直线,,那么直线与直线的位置关系一定是()A.平行 B.异面 C.垂直 D.不相交7.茎叶图记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分).已知甲组数据的众数为124,乙组数据的平均数即为甲组数据的中位数,则,的值分别为A. B.C. D.8.某班现有60名学生,随机编号为0,1,2,…,59.依编号顺序平均分成10组,组号依次为1,2,3,…,10.现用系统抽样的方法抽取一个容量为10的样本,若在第1组中随机抽取的号码为5,则在第7组中随机抽取的号码为()A.41 B.42 C.43 D.449.已知实数满足,那么的最小值为(
)A. B. C. D.10.已知各个顶点都在同一球面上的正方体的棱长为2,则这个球的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.利用数学归纳法证明不等式“”的过程中,由“”变到“”时,左边增加了_____项.12.已知是内的一点,,,则_______;若,则_______.13.在中,,,,则的面积是__________.14.函数的单调增区间为_________.15.已知函数f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分图象如图所示,则f()=________.16.已知扇形的圆心角为,半径为,则扇形的弧长为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求不等式的解集;(2)若关于的不等式能成立,求实数的取值范围.18.已知的内角的对边分别为,若向量,且.(1)求角的值;(2)已知的外接圆半径为,求周长的取值范围.19.如图所示,在三棱柱中,与都为正三角形,且平面,分别是的中点.求证:(1)平面平面;(2)平面平面.20.如图,在半径为、圆心角为的扇形的弧上任取一点,作扇形的内接矩形,使点在上,点在上,设矩形的面积为,(1)按下列要求写出函数的关系式:①设,将表示成的函数关系式;②设,将表示成的函数关系式,(2)请你选用(1)中的一个函数关系式,求出的最大值.21.在中,角、、的对边分别为、、,为的外接圆半径.(1)若,,,求;(2)在中,若为钝角,求证:;(3)给定三个正实数、、,其中,问:、、满足怎样的关系时,以、为边长,为外接圆半径的不存在,存在一个或存在两个(全等的三角形算作同一个)?在存在的情兄下,用、、表示.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
解不等式4sin【详解】因为f(x)=4所以4sinxcos解得kπ+π故选:D【点睛】本题主要考查三角函数定义域的求法,考查解三角不等式,意在考查学生对这些知识的理解掌握水平,属于基础题.2、C【解析】试题分析:设,故选C.考点:解三角形.3、B【解析】
解:,是周期为的奇函数,
对于A,在上是递减的,错误;
对于B,是奇函数,图象关于原点对称,正确;
对于C,是周期为,错误;
对于D,的最大值为1,错误;
所以B选项是正确的.4、A【解析】
可先由弧长计算出半径,再计算面积.【详解】设扇形半径为,则,,.故选:A.【点睛】本题考查扇形面积公式,考查扇形弧长公式,掌握扇形的弧长和面积公式是解题基础.5、D【解析】
分别求出长方体和三棱锥E-BCD的体积,即可求出答案.【详解】由题意,,,则.故选D.【点睛】本题考查了长方体与三棱锥的体积的计算,考查了学生的计算能力,属于基础题.6、D【解析】
利用空间中线线、线面、面面的位置关系得出直线与直线没有公共点.【详解】由题平面平面,直线,则直线与直线的位置关系平行或异面,即两直线没有公共点,不相交.故选D.【点睛】本题考查空间中两条直线的位置关系,属于简单题.7、A【解析】
根据众数的概念可确定;根据平均数的计算方法可构造方程求得.【详解】甲组数据众数为甲组数据的中位数为乙组数据的平均数为:,解得:本题正确选项:【点睛】本题考查茎叶图中众数、中位数、平均数的求解,属于基础题.8、A【解析】
由系统抽样.先确定分组间隔,然后编号成等差数列来求所抽取号码.【详解】由题知分组间隔为以,又第1组中抽取的号码为5,所以第7组中抽取的号码为.故选:A.【点睛】本题考查系统抽样,掌握系统抽样的概念与方法是解题基础.9、A【解析】
表示直线上的点到原点的距离,利用点到直线的距离公式求得最小值.【详解】依题意可知表示直线上的点到原点的距离,故原点到直线的距离为最小值,即最小值为,故选A.【点睛】本小题主要考查点到直线的距离公式,考查化归与转化的数学思想方法,属于基础题.10、A【解析】
先求出外接球的半径,再求球的表面积得解.【详解】由题得正方体的对角线长为,所以.故选A【点睛】本题主要考查多面体的外接球问题和球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
分析题意,根据数学归纳法的证明方法得到时,不等式左边的表示式是解答该题的突破口,当时,左边,由此将其对时的式子进行对比,得到结果.【详解】当时,左边,当时,左边,观察可知,增加的项数是,故答案是.【点睛】该题考查的是有关数学归纳法的问题,在解题的过程中,需要明确式子的形式,正确理解对应式子中的量,认真分析,明确哪些项是添的,得到结果.12、【解析】
对式子两边平方,再利用向量的数量积运算即可;式子两边分别与向量,进行数量积运算,得到关于的方程组,解方程组即可得答案.【详解】∵,∴;∵,∴解得:,∴.故答案为:;.【点睛】本题考查向量数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将向量等式转化为数量关系的方法.13、【解析】
计算,等腰三角形计算面积,作底边上的高,计算得到答案.【详解】,过C作于D,则故答案为【点睛】本题考查了三角形面积计算,属于简单题.14、【解析】
先求出函数的定义域,再根据二次函数的单调性和的单调性,结合复合函数的单调性的判断可得出选项.【详解】因为,所以或,即函数定义域为,设,所以在上单调递减,在上单调递增,而在单调递增,由复合函数的单调性可知,函数的单调增区间为.故填:.【点睛】本题考查复合函数的单调性,注意在考虑函数的单调性的同时需考虑函数的定义域,属于基础题.15、3【解析】
根据图象看出周期、特殊点的函数值,解出待定系数即可解得.【详解】由图可知:解得又因:所以又因:即所以又所以又因:所以即所以所以所以故得解.【点睛】本题考查由图象求正切函数的解析式,属于中档题。16、9【解析】
由扇形的弧长公式运算可得解.【详解】解:由扇形的弧长公式得:,故答案为9.【点睛】本题考查了扇形的弧长,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(1)或.【解析】
(1)运用绝对值的意义,去绝对值,解不等式,求并集即可;(1)求得|t﹣1|+|1t+3|的最小值,原不等式等价为|x+l|﹣|x﹣m|的最大值,由绝对值不等式的性质,以及绝对值不等式的解法,可得所求范围.【详解】解:(1)由题意可得|x﹣1|+|1x+3|>4,当x≥1时,x﹣1+1x+3>4,解得x≥1;当x<1时,1﹣x+1x+3>4,解得0<x<1;当x时,1﹣x﹣1x﹣3>4,解得x<﹣1.可得原不等式的解集为(﹣∞,﹣1)∪(0,+∞);(1)由(1)可得|t﹣1|+|1t+3|,可得t时,|t﹣1|+|1t+3|取得最小值,关于x的不等式|x+l|﹣|x﹣m|≥|t﹣1|+|1t+3|(t∈R)能成立,等价为|x+l|﹣|x﹣m|的最大值,由|x+l|﹣|x﹣m|≤|m+1|,可得|m+1|,解得m或m.【点睛】本题考查绝对值不等式的解法和绝对值不等式的性质的运用,求最值,考查化简变形能力,以及运算能力,属于基础题.18、(1)(2)【解析】试题分析:(1)由,得,利用正弦定理统一到角上易得(2)根据题意,得,由余弦定理,得,结合均值不等式可得,所以的最大值为4,又,从而得到周长的取值范围.试题解析:(1)由,得.由正弦定理,得,即.在中,由,得.又,所以.(2)根据题意,得.由余弦定理,得,即,整理得,当且仅当时,取等号,所以的最大值为4.又,所以,所以.所以的周长的取值范围为.19、(1)见解析.(2)见解析.【解析】
(1)由分别是的中点,证得,由线面平行的判定定理,可得平面,平面,再根据面面平行的判定定理,即可证得平面平面.(2)利用线面垂直的判定定理,可得平面,再利用面面垂直的判定定理,即可得到平面平面.【详解】(1)在三棱柱中,因为分别是的中点,所以,根据线面平行的判定定理,可得平面,平面又,∴平面平面.(2)在三棱柱中,平面,所以,又,,所以平面,而平面,所以平面平面.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.20、(Ⅰ),;(Ⅱ).【解析】试题分析:(1)①通过求出矩形的边长,求出面积的表达式;②利用三角函数的关系,求出矩形的邻边,求出面积的表达式;(2)利用(1)②的表达式,化为一个角的一个三角函数的形式,根据的范围确定矩形面积的最大值.试题解析:(1)①因为,所以,所以,.②当时,,则,又,所以,所以,().(2)由②得,,当时,取得最大值为.考点:1.三角函数中的恒等变换;2.两角和与差的正弦函数.【方法点睛】本题主要考查的是函数解析式的求法,三角函数的最值的确定,三角函数公式的灵活运用,计算能力,属于中档题,此题是课本题目的延伸,如果(2)选择(1)①中的解析式,需要用到导数求解,麻烦,不是命题者的本意,因此正确的选择是选择(1)②中的解析式,化成一个角的一个三角函数的形式,根据的范围确定矩形面积的最大值,此类题目选择正确的解析式是求解容易与否的关键.21、(1);(2)见解析;(3)见解析.【解析】
(1)利用正弦定理求出的值,然后利用余弦定理求出的值;(2)由余弦定理得出可得证;(3)分类讨论判断三角形的形状与两边、的关系,以及与直径的大小的比较,分类讨论即可.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度消防清包工合同范本:消防设施维修与技术支持3篇
- 二零二五年度葡萄酒年份酒拍卖会合作合同4篇
- 二零二五年度航空航天产业劳动合同范本
- 二零二五年度环保项目投资顾问聘用合同范本4篇
- 二零二五年度气体消防系统安全技术研发与产业化合同
- 2025-2030全球电源铝支架行业调研及趋势分析报告
- 2025年全球及中国介入穿刺针行业头部企业市场占有率及排名调研报告
- 二零二五年度水泥涵管生产自动化改造合同
- 二零二五年度私人租房租赁续约合同
- 化肥销售居间服务合同
- 电力沟施工组织设计-电缆沟
- 《法律援助》课件
- 小儿肺炎治疗与护理
- 《高处作业安全》课件
- 春节后收心安全培训
- 小学教师法制培训课件
- 电梯操作证及电梯维修人员资格(特种作业)考试题及答案
- 市政绿化养护及市政设施养护服务方案(技术方案)
- SLT824-2024 水利工程建设项目文件收集与归档规范
- 锅炉本体安装单位工程验收表格
- 报价单(产品报价单)
评论
0/150
提交评论