吉林省吉林市五十五中2023年数学高一下期末统考模拟试题含解析_第1页
吉林省吉林市五十五中2023年数学高一下期末统考模拟试题含解析_第2页
吉林省吉林市五十五中2023年数学高一下期末统考模拟试题含解析_第3页
吉林省吉林市五十五中2023年数学高一下期末统考模拟试题含解析_第4页
吉林省吉林市五十五中2023年数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国数学家刘微在《九章算术注》中提出“割圆”之说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣.”意思是“圆内接正多边形的边数无限增加的时候,它的周长的极限是圆的周长,它的面积的极限是圆的面积”.如图,若在圆内任取一点,则此点取自其内接正六边形的边界及其内部的概率为()A. B. C. D.2.已知点,直线方程为,且直线与线段相交,求直线的斜率k的取值范围为()A.或 B.或C. D.3.书架上有2本数学书和2本语文书,从这4本书中任取2本,那么互斥但不对立的两个事件是()A.“至少有1本数学书”和“都是语文书”B.“至少有1本数学书”和“至多有1本语文书”C.“恰有1本数学书”和“恰有2本数学书”D.“至多有1本数学书”和“都是语文书”4.已知直线(3-2k)x-y-6=0不经过第一象限,则k的取值范围为()A.-∞,32 B.-∞,325.=()A. B. C. D.6.,,是空间三条不同的直线,则下列命题正确的是A., B.,C.,,共面 D.,,共点,,共面7.已知圆锥的底面半径为,母线与底面所成的角为,则此圆锥的侧面积为()A. B. C. D.8.已知为不同的平面,为不同的直线则下列选项正确的是()A.若,则 B.若,则C.若,则 D.若,则9.设满足约束条件则的最大值为().A.10 B.8 C.3 D.210.已知向量,满足,在上的投影(正射影的数量)为-2,则的最小值为()A. B.10 C. D.8二、填空题:本大题共6小题,每小题5分,共30分。11.两个实习生加工一个零件,产品为一等品的概率分别为和,则这两个零件中恰有一个一等品的概率为__________.12.的内角的对边分别为,若,,,则的面积为__________.13.已知函数,数列的通项公式是,当取得最小值时,_______________.14.棱长为,各面都为等边三角形的四面体内有一点,由点向各面作垂线,垂线段的长度分别为,则=______.15.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,则x的值为_________.16._____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知公差不为零的等差数列中,,且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.18.已知向量.(1)若,且,求实数的值;(2)若,且与的夹角为,求实数的值.19.已知等差数列满足,前项和.(1)求的通项公式(2)设等比数列满足,,求的通项公式及的前项和.20.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表l所示:表1根据以上数据,绘制了如右图所示的散点图.(1)根据散点图判断,在推广期内,y=a+bx与(2)根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;参考数据:其中υ参考公式:对于一组数据u1,υ1,21.如图,四棱锥中,平面,底面是平行四边形,若,.(Ⅰ)求证:平面平面;(Ⅱ)求棱与平面所成角的正弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

设出圆的半径,表示出圆的面积和圆内接正六边形的面积,即可由几何概型概率计算公式得解.【详解】设圆的半径为则圆的面积为圆内接正六边形的面积为由几何概型概率可知,在圆内任取一点,则此点取自其内接正六边形的边界及其内部的概率为故选:C【点睛】本题考查了圆的面积及圆内接正六边形的面积求法,几何概型概率的计算公式,属于基础题.2、A【解析】

先求出线段的方程,得出,在直线的方程中得到,将代入的表达式,利用不等式的性质求出的取值范围.【详解】易求得线段的方程为,得,由直线的方程得,当时,,此时,;当时,,此时,.因此,实数的取值范围是或,故选A.【点睛】本题考查斜率取值范围的计算,可以利用数形结合思想,观察倾斜角的变化得出斜率的取值范围,也可以利用参变量分离,得出斜率的表达式,利用不等式的性质得出斜率的取值范围,考查计算能力,属于中等题.3、C【解析】

两个事件互斥但不对立指的是这两个事件不能同时发生,也可以都不发生,逐一判断即可【详解】对于A:“至少有1本数学书”和“都是语文书”是对立事件,故不满足题意对于B:“至少有1本数学书”和“至多有1本语文书”可以同时发生,故不满足题意对于C:“恰有1本数学书”和“恰有2本数学书”互斥但不对立,满足题意对于D:“至多有1本数学书”和“都是语文书”可以同时发生,故不满足题意故选:C【点睛】本题考查互斥而不对立的两个事件的判断,考查互斥事件、对立事件的定义等基础知识,是基础题.4、D【解析】

由题意可得3﹣2k=0或3﹣2k<0,解不等式即可得到所求范围.【详解】直线y=(3﹣2k)x﹣6不经过第一象限,可得3﹣2k=0或3﹣2k<0,解得k≥3则k的取值范围是[32故选:D.【点睛】本题考查直线方程的运用,注意运用直线的斜率为0的情况,考查运算能力,属于基础题.5、A【解析】

试题分析:由诱导公式,故选A.考点:诱导公式.6、B【解析】

解:因为如果一条直线平行于两条垂线中的一条,必定垂直于另一条.选项A,可能相交.选项C中,可能不共面,比如三棱柱的三条侧棱,选项D,三线共点,可能是棱锥的三条棱,因此错误.选B.7、B【解析】

首先计算出母线长,再利用圆锥的侧面积(其中为底面圆的半径,为母线长),即可得到答案.【详解】由于圆锥的底面半径,母线与底面所成的角为,所以母线长,故圆锥的侧面积;故答案选B【点睛】本题考查圆锥母线和侧面积的计算,解题关键是熟练掌握圆锥的侧面积的计算公式,即(其中为底面圆的半径,为母线长),属于基础题8、C【解析】

通过对ABCD逐一判断,利用点线面的位置关系即可得到答案.【详解】对于A选项,有可能异面,故错误;对于B选项,可能相交或异面,故错误;对于C选项,,显然故正确;对于D选项,也有可能,故错误.所以答案选C.【点睛】本题主要考查直线与平面的位置关系,意在考查学生的空间想象能力,难度不大.9、B【解析】

作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数即可求解.【详解】作出可行域如图:化目标函数为,联立,解得.由图象可知,当直线过点A时,直线在y轴上截距最小,有最大值.【点睛】本题主要考查了简单的线性规划,数形结合的思想,属于中档题.10、D【解析】

在上的投影(正射影的数量)为可知,可求出,求的最小值即可得出结果.【详解】因为在上的投影(正射影的数量)为,所以,即,而,所以,因为所以,即,故选D.【点睛】本题主要考查了向量在向量上的正射影,向量的数量积,属于难题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用相互独立事件概率乘法公式直接求解.【详解】解:两个实习生加工一个零件,产品为一等品的概率分别为和,这两个零件中恰有一个一等品的概率为:.故答案为:.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.12、【解析】

由已知及正弦定理可得:,进而利用余弦定理即可求得a的值,进而可求c,利用三角形的面积公式即可求解.【详解】,由正弦定理可得:,,由余弦定理,可得,整理可得:或(舍去),,,故答案为:.【点睛】本题注意考查余弦定理与正弦定理的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.13、110【解析】

要使取得最小值,可令,即,对的值进行粗略估算即可得到答案.【详解】由题知:①.要使①式取得最小值,可令①式等于.即,.又因为,,则当时,,,①式.则当时,,,①式.当或时,①式的值会变大,所以时,取得最小值.故答案为:【点睛】本题主要考查数列的函数特征,同时考查了指数函数和对数函数的性质,核心素养是考查学生灵活运用知识解决问题的能力,属于难题.14、.【解析】

根据等积法可得∴15、【解析】

根据茎叶图中数据和中位数的定义可构造方程求得.【详解】甲组数据的中位数为,解得:故答案为:【点睛】本题考查茎叶图中中位数相关问题的求解,属于基础题.16、【解析】

将写成,切化弦后,利用两角和差余弦公式可将原式化为,利用二倍角公式可变为,由可化简求得结果.【详解】本题正确结果:【点睛】本题考查利用三角恒等变换公式进行化简求值的问题,涉及到两角和差余弦公式、二倍角公式的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)解方程组即得,即得数列的通项公式;(Ⅱ)利用裂项相消法求数列的前项和.【详解】(Ⅰ)由题意:,化简得,因为数列的公差不为零,,故数列的通项公式为.(Ⅱ)由(Ⅰ)知,故数列的前项和.【点睛】本题主要考查等差数列通项的求法,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1);(2).【解析】

(1)根据平面向量加法和数乘的坐标表示公式、数量积的坐标表示公式,结合两个互相垂直的平面向量数量积为零,进行求解即可;(2)利用平面向量夹角公式进行求解即可.【详解】(1)当时,.因为,所以;(2)当时,所以有,因为与的夹角为,所以有.【点睛】本题考查了平面向量运算的坐标表示公式,考查了平面向量夹角公式,考查了数学运算能力.19、(1);(2),.【解析】

(1)设的公差为,则由已知条件得,.化简得解得故通项公式,即.(2)由(1)得.设的公比为,则,从而.故的前项和.20、(1)y=c⋅dx【解析】

(1)根据散点图判断,y=c⋅dx适宜;(2)y=c⋅dx,两边同时取常用对数得:【详解】(1)根据散点图判断,y=c⋅dx适宜作为扫码支付的人数y关于活动推出天数(2)∵y=c⋅dx,两边同时取常用对数得:1gy=1g(c⋅d设1gy=v,∴v=1gc+1gd⋅x∵x=4,v∴lgd=把样本中心点(4,1.54)代入v=1gc+1gd⋅x,得:∴v=0.54+0.25x,∴y关于x的回归方程式:y=把x=8代入上式,y=3.47×活动推出第8天使用扫码支付的人次为3470;【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的,线性回归方程得到的预测值是预测变量的估计值,不是准确值.21、(Ⅰ)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论