2023年广东省汕头市名校高一数学第二学期期末达标测试试题含解析_第1页
2023年广东省汕头市名校高一数学第二学期期末达标测试试题含解析_第2页
2023年广东省汕头市名校高一数学第二学期期末达标测试试题含解析_第3页
2023年广东省汕头市名校高一数学第二学期期末达标测试试题含解析_第4页
2023年广东省汕头市名校高一数学第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角的对边分别是,若,则()A.5 B. C.4 D.32.已知中,,,点是的中点,是边上一点,则的最小值是()A. B. C. D.3.给出下列四个命题:①垂直于同一条直线的两条直线互相平行;②平行于同一条直线的两条直线平行;③若直线满足,则;④若直线,是异面直线,则与,都相交的两条直线是异面直线.其中假命题的个数是()A.1 B.2 C.3 D.44.在等差数列中,已知,则数列的前9项之和等于()A.9 B.18 C.36 D.525.已知,则下列4个角中与角终边相同的是()A. B. C. D.6.等差数列{an}的前n项和为Sn,若S9=S4,则S13=()A.13 B.7 C.0 D.17.在中,若,则是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形8.已知一个等比数列项数是偶数,其偶数项之和是奇数项之和的3倍,则这个数列的公比为()A.2 B.3 C.4 D.69.在中,角所对的边分别为,已知,则最大角的余弦值是()A. B. C. D.10.已知,其中,若函数在区间内有零点,则实数的取值可能是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列是正项数列,且,则_______.12.若正四棱锥的侧棱长为,侧面与底面所成的角是45°,则该正四棱锥的体积是________.13.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为________.14.一个封闭的正三棱柱容器,该容器内装水恰好为其容积的一半(如图1,底面处于水平状态),将容器放倒(如图2,一个侧面处于水平状态),这时水面与各棱交点分别为E,F、,,则的值是__________.15.已知向量,满足,与的夹角为,则在上的投影是;16.在中,,,是角,,所对应的边,,,如果,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足:,,数列满足.(1)若数列的前项和为,求的值;(2)求的值.18.的内角,,的对边分别为,,,设.(1)求;(2)若,求.19.锐角三角形的内角A,B,C的对边分别为a,b,c,且.(1)求A;(2)若,,求面积.20.已知圆的半径是2,圆心为.(1)求圆的方程;(2)若点是圆上的动点,点在轴上,的最大值等于7,求点的坐标.21.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调査,并将问卷中的这50人根据其满意度评分值(百分制)按照分成5组,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:频率分布表组别分组频数频率第1组80.16第2组▆第3组200.40第4组▆0.08第5组2合计▆▆(1)求的值;(2)若在满意度评分值为的人中随机抽取2人进行座谈,求所抽取的2人中至少一人来自第5组的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

已知两边及夹角,可利用余弦定理求出.【详解】由余弦定理可得:,解得.故选D.【点睛】本题主要考查利用正余弦定理解三角形,注意根据条件选用合适的定理解决.2、B【解析】

通过建系以及数量积的坐标运算,从而转化为函数的最值问题.【详解】根据题意,建立图示直角坐标系,,,则,,,.设,则,是边上一点,当时,取得最小值,故选.【点睛】本题主要考察解析法在向量中的应用,将平面向量的数量积转化成了函数的最值问题.3、B【解析】

利用空间直线的位置关系逐一分析判断得解.【详解】①为假命题.可举反例,如a,b,c三条直线两两垂直;②平行于同一条直线的两条直线平行,是真命题;③若直线满足,则,是真命题;④是假命题,如图甲所示,c,d与异面直线,交于四个点,此时c,d异面,一定不会平行;当点B在直线上运动(其余三点不动),会出现点A与点B重合的情形,如图乙所示,此时c,d共面且相交.故答案为B【点睛】本题主要考查空间直线的位置关系,意在考查学生对该知识的理解掌握水平和分析推理能力.4、B【解析】

利用等差数列的下标性质,可得出,再由等差数列的前项和公式求出的值.【详解】在等差数列中,故选:B【点睛】本题考查了等差数列的下标性质、以及等差数列的前项和公式,考查了数学运算能力.5、C【解析】

先写出与角终边相同的角的集合,再给k取值得解.【详解】由题得与角终边相同的集合为,当k=6时,.所以与角终边相同的角为.故选C【点睛】本题主要考查终边相同的角的求法,意在考查学生对该知识的理解掌握水平.6、C【解析】

由题意,利用等差数列前n项和公式求出a1=﹣6d,由此能求出S13的值.【详解】∵等差数列{an}的前n项和为Sn,S9=S4,∴4a1,解得a1=﹣6d,∴S1378d﹣78d=1.故选:C.【点睛】本题考查等差数列的前n项和公式的应用,考查运算求解能力,是基础题.7、A【解析】

首先根据降幂公式把等式右边降幂你,再根据把换成与的关系,进一步化简即可.【详解】,,,选A.【点睛】本题主要考查了二倍角,两角和与差的余弦等,需熟记两角和与差的正弦余弦等相关公式,以及特殊三角函数的值是解决本题的关键,属于基础题.8、B【解析】

由数列为等比数列,则,结合题意即可得解.【详解】解:因为数列为等比数列,设等比数列的公比为,则,又是奇数项之和的3倍,则,故选:B.【点睛】本题考查了等比数列的性质,重点考查了等比数列公比的运算,属基础题.9、B【解析】

由边之间的比例关系,设出三边长,利用余弦定理可求.【详解】因为,所以c边所对角最大,设,由余弦定理得,故选B.【点睛】本题考查余弦定理,计算求解能力,属于基本题.10、D【解析】

求出函数,令,,根据不等式求解,即可得到可能的取值.【详解】由题:,其中,令,,若函数在区间内有零点,则有解,解得:当当当结合四个选项可以分析,实数的取值可能是.故选:D【点睛】此题考查根据函数零点求参数的取值范围,需要熟练掌握三角函数的图像性质,求出函数零点再讨论其所在区间列不等式求解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

有已知条件可得出,时,与题中的递推关系式相减即可得出,且当时也成立。【详解】数列是正项数列,且所以,即时两式相减得,所以()当时,适合上式,所以【点睛】本题考差有递推关系式求数列的通项公式,属于一般题。12、【解析】

过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,设正四棱锥的底面长为,根据已知求出a=2,SO=1,再求该正四棱锥的体积.【详解】过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,则为侧面与底面所成角的平面角,即,设正四棱锥的底面长为,则,所以,在中,∵∴,解得,∴∴棱锥的体积.故答案为【点睛】本题主要考查空间线面角的计算,考查棱锥体积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.13、【解析】

求出的垂直平分线方程,两垂直平分线交点为外接圆圆心.再由两点间距离公式计算.【详解】由点B(0,),C(2,),得线段BC的垂直平分线方程为x=1,①由点A(1,0),B(0,),得线段AB的垂直平分线方程为②联立①②,解得△ABC外接圆的圆心坐标为,其到原点的距离为.故答案为:【点睛】本题考查三角形外接圆圆心坐标,外心是三角形三条边的中垂线的交点,到三顶点距离相等.14、【解析】

设,则,由题意得:,由此能求出的值.【详解】设,则,由题意得:,解得,.故答案为:.【点睛】本题考查两线段比值的求法、三棱柱的体积等基础知识,考查运算求解能力,是中档题.15、1【解析】考查向量的投影定义,在上的投影等于的模乘以两向量夹角的余弦值16、【解析】

首先利用同角三角函数的基本关系求出,再利用正弦定理即可求解.【详解】在中,,,即,,,即,,,,,即,,,即,,,由正弦定理得,,,故答案为:【点睛】本题考查了同角三角函数的基本关系以及正弦定理解三角形,需熟记公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)构造数列等差数列求得的通项公式,再进行求和,再利用裂项相消求得;

(2)由题出现,故考虑用分为偶数和奇数两种情况进行计算.【详解】(1)由得,即,所以是以为首项,1为公差的等差数列,故,故.所以,故.

(2)当为偶数时,,当为奇数时,为偶数,

综上所述,当为偶数时,,当为奇数时,即.【点睛】本题主要考查了等差数列定义的应用,考查构造法求数列的通项公式与裂项求和及奇偶并项求和的方法,考查了分析问题的能力及逻辑推理能力,属于中档题.18、(1)(2)【解析】

(1)由正弦定理得,再利用余弦定理的到.(2)将代入等式,化简得到答案.【详解】解:(1)由结合正弦定理得;∴又,∴.(2)由,∴∴,∴∴又∴解得:,.【点睛】本题考查了正弦定理,余弦定理,和差公式,意在考查学生的计算能力.19、(1),(2)【解析】

(1)利用三角函数的和差公式化简已知等式可得,结合为锐角可得的值.(2)由余弦定理可得,解得的值,根据三角形的面积公式即可求解.【详解】(1)∵,∴∵∴可得:∵A,C为锐角,∴,可得:(2)∵∴由余弦定理,可得:,即,解得:或3,因为为锐角三角形,所以需满足所以所以的面积为【点睛】本题主要考查了三角函数恒等变换及余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.20、(1);(2)或.【解析】

(1)直接根据圆的标准式方程,写出圆的方程即可;(2)设.由等于1.即,解得即可.【详解】解:(1)已知圆的半径是2,圆心为.圆的方程:;(2)设.的最大值等于7,等于1..解得或,即或.【点睛】本题考查了圆的方程,点与圆的位置关系,属于中档题.21、(1);(2).【解析】

(1)根据频率分布表可得b.先求得内的频数,即可由总数减去其余部分求得.结合频率分布直方图,即可求得的值.(2)根据频率分布表可知在内有4人,在有2人.列举出从这6人中选取2人的所有可能,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论