2023年安徽合肥市华泰高中数学高一第二学期期末达标测试试题含解析_第1页
2023年安徽合肥市华泰高中数学高一第二学期期末达标测试试题含解析_第2页
2023年安徽合肥市华泰高中数学高一第二学期期末达标测试试题含解析_第3页
2023年安徽合肥市华泰高中数学高一第二学期期末达标测试试题含解析_第4页
2023年安徽合肥市华泰高中数学高一第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知无穷等比数列的公比为,前项和为,且,下列条件中,使得恒成立的是()A., B.,C., D.,2.若集合A={x|2≤x<4}, B={x|x>3}A.{x|3≤x<4} B.{x|3<x<4} C.{x|2≤x<3} D.{x|2≤x≤3}3.已知,其中,若函数在区间内有零点,则实数的取值可能是()A. B. C. D.4.用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a45.若直线与圆相切,则()A. B. C. D.6.曲线与过原点的直线没有交点,则的倾斜角的取值范围是()A. B. C. D.7.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共线,则四边形ABCD为()A.平行四边形 B.矩形 C.梯形 D.菱形8.不等式的解集为()A. B.C. D.9.若直线:与直线:平行,则的值为()A.1 B.1或2 C.-2 D.1或-210.若,则下列不等式不成立的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数图象各点的横坐标缩短为原来的一半,再向左平移个单位,得到的函数图象离原点最近的的对称中心是______.12.若正实数满足,则的最大值为__________.13.记为数列的前项和.若,则_______.14.数列的前项和,则的通项公式_____.15.在锐角△中,角所对应的边分别为,若,则角等于________.16.已知,且,.则的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的前项和为,公比,,.(1)求等比数列的通项公式;(2)设,求的前项和.18.如图,四棱锥中,底面,分别为的中点,.(1)证明:平面平面(2)求三棱锥的体积.19.已知等比数列的公比为,是的前项和;(1)若,,求的值;(2)若,,有无最值?说明理由;(3)设,若首项和都是正整数,满足不等式,且对于任意正整数有成立,问:这样的数列有几个?20.已知cosα=,sin(α-β)=,且α,β∈(0,).求:(1)cos(α-β)的值;(2)β的值.21.已知,函数.(1)当时,解不等式;(2)若对,不等式恒成立,求a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由已知推导出,由此利用排除法能求出结果.【详解】,,,,,若,则,故A与C不可能成立;若,则,故B成立,D不成立.故选:B【点睛】本题考查了等比数列的前项和公式以及排除法在选择题中的应用,属于中档题.2、B【解析】

根据交集定义计算.【详解】由题意A∩B={x|3<x<4}.故选B.【点睛】本题考查集合的交集运算,属于基础题.3、D【解析】

求出函数,令,,根据不等式求解,即可得到可能的取值.【详解】由题:,其中,令,,若函数在区间内有零点,则有解,解得:当当当结合四个选项可以分析,实数的取值可能是.故选:D【点睛】此题考查根据函数零点求参数的取值范围,需要熟练掌握三角函数的图像性质,求出函数零点再讨论其所在区间列不等式求解.4、C【解析】

在验证时,左端计算所得的项,把代入等式左边即可得到答案.【详解】解:用数学归纳法证明,

在验证时,把当代入,左端.

故选:C.【点睛】此题主要考查数学归纳法证明等式的问题,属于概念性问题.5、C【解析】

利用圆心到直线的距离等于圆的半径即可求解.【详解】由题得圆的圆心坐标为(0,0),所以.故选C【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.6、A【解析】

作出曲线的图形,得出各射线所在直线的倾斜角,观察直线在绕着原点旋转时,直线与曲线没有交点时,直线的倾斜角的变化,由此得出的取值范围.【详解】当,时,由得,该射线所在直线的倾斜角为;当,时,由得,该射线所在直线的倾斜角为;当,时,由得,该射线所在直线的倾斜角为;当,时,由得,该射线所在直线的倾斜角为.作出曲线的图象如下图所示:由图象可知,要使得过原点的直线与曲线没有交点,则直线的倾斜角的取值范围是,故选:A.【点睛】本题考查直线倾斜角的取值范围,考查数形结合思想,解题的关键就是作出图形,利用数形结合思想进行求解,属于中等题.7、C【解析】∵=++=-8a-2b=2,与不平行,∴四边形ABCD为梯形.8、B【解析】

把不等式左边的二次三项式因式分解后求出二次不等式对应方程的两根,结合二次函数的图象可得二次不等式的解集.【详解】由,得(x−1)(x+3)>0,解得x<−3或x>1.所以原不等式的解为,故选:B.【点睛】本题考查一元二次不等式的解法,求出二次方程的根结合二次函数的图象可得解集,属于基础题.9、A【解析】试题分析:因为直线:与直线:平行,所以或-2,又时两直线重合,所以.考点:两条直线平行的条件.点评:此题是易错题,容易选C,其原因是忽略了两条直线重合的验证.10、B【解析】

根据不等式的基本性质、重要不等式、函数的单调性即可得出结论.【详解】解:∵,∴,,∴,即,故A成立;,即,故B不成立;,即,故C成立;∵指数函数在上单调递增,且,∴,故D成立;故选:B.【点睛】本题主要考查不等式的基本性质,作差法比较大小,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由二倍角公式化简函数式,然后由三角函数图象变换得新解析式,结合正弦函数性质得对称中心.【详解】由题意,经过图象变换后新函数解析式为,由,,,绝对值最小的是,因此所求对称中心为.故答案为:.【点睛】本题考查三角函数的图象变换,考查正弦函数的性质,考查二倍角公式,掌握正弦函数性质是解题关键.12、【解析】

可利用基本不等式求的最大值.【详解】因为都是正数,由基本不等式有,所以即,当且仅当时等号成立,故的最大值为.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.13、【解析】

由和的关系,结合等比数列的定义,即可得出通项公式.【详解】当时,当时,即则数列是首项为,公比为的等比数列故答案为:【点睛】本题主要考查了已知求,属于基础题.14、【解析】

根据和之间的关系,应用公式得出结果【详解】当时,;当时,;∴故答案为【点睛】本题考查了和之间的关系式,注意当和时要分开讨论,题中的数列非等差数列.本题属于基础题15、【解析】试题分析:利用正弦定理化简,得,因为,所以,因为为锐角,所以.考点:正弦定理的应用.【方法点晴】本题主要考查了正弦定理的应用、以及特殊角的三角函数值问题,其中解答中涉及到解三角形中的边角互化,转化为三角函数求值的应用,解答中熟练掌握正弦定理的变形,完成条件的边角互化是解答的关键,注重考查了分析问题和解答问题的能力,同时注意条件中锐角三角形,属于中档试题.16、2【解析】

.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bn=n,,由裂项相消求和可得答案.【详解】(1)等比数列的前项和为,公比,①,②.②﹣①,得,则,又,所以,因为,所以,所以,所以;(2),所以前项和.【点睛】裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如或.18、(1)见证明;(2)【解析】

(1)先证明面,再证明平面平面;(2)由求解.【详解】(1)证明:由已知为的中点,且,所以,因为,所以,又因为,所以四边形为平行四边形,所以,又因为面,所以平面.在△中,因为,分别为,的中点,所以,因为,,所以面,因为,所以平面平面(2)由已知为中点,又因为,所以,因为,,,所以.【点睛】本题主要考查空间几何元素平行关系的证明,考查几何体体积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.19、(1);(2),最小值,最大值;,最小值,无最大值;(3)个【解析】

(1)由,分类讨论,分别求得,结合极限的运算,即可求解;(2)由等比数列的前项和公式,求得,再分和两种情况讨论,即可求解,得到结论;(3)由不等式,求得,在由等比数列的前项和公式,得到,根据不等式成立,可得,结合数列的单调性,即可求解.【详解】(1)由题意,等比数列,且,①当时,可得,,所以,②当时,可得,所以,综上所述,当,时,.(2)由等比数列的前项和公式,可得,因为且,所以,①当时,单调递增,此时有最小值,无最大值;②当时,中,当为偶数时,单调递增,且;当为奇数时,单调递减,且;分析可得:有最大值,最小值为;综上述,①当时,的最小值为,最大值为;②当时,的最小值为,无最大值;(3)由不等式,可得,又由等比数列的前项和公式,可得,因为首项和都是正整数,所以,又由对于任意正整数有成立,可得,联立可得,设,由为正整数,可得单调递增,所以函数单调递减,所以,且所以,当时,,即,解得,此时有个,当时,,即,解得,此时有个,所以共有个.【点睛】本题主要考查了等比数列的前项和公式,数列的极限的计算,以及数列的单调性的综合应用,其中解答中熟记等比数列的前项和公式,极限的运算法则,以及合理分类讨论是解答的关键,着重考查了分类讨论思想,以及分析问题和解答问题的能力,属于难题.20、(1)【解析】

(1)利用同角的平方关系求cos(α-β)的值;(2)利用求出,再求的值.【详解】(1)因为,所以cos(α-β).(2)因为cosα=,所以,所以,因为β∈(0,),所以.【点睛】本题主要考查同角的三角函数的关系求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论