2023届辽宁省朝阳市建平县建平二中高一数学第二学期期末调研试题含解析_第1页
2023届辽宁省朝阳市建平县建平二中高一数学第二学期期末调研试题含解析_第2页
2023届辽宁省朝阳市建平县建平二中高一数学第二学期期末调研试题含解析_第3页
2023届辽宁省朝阳市建平县建平二中高一数学第二学期期末调研试题含解析_第4页
2023届辽宁省朝阳市建平县建平二中高一数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两个单位向量的夹角为,则下列结论不正确的是()A.方向上的投影为 B.C. D.2.在中,已知其面积为,则=()A. B. C. D.3.若向量,且,则等于()A. B. C. D.4.如图是某几何体的三视图,则该几何体的外接球的表面积是()A. B. C. D.5.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. B.C. D.6.化简=()A. B.C. D.7.用数学归纳法时,从“k到”左边需增乘的代数式是()A. B.C. D.8.已知直线经过点,且与直线垂直,则的方程为()A. B.C. D.9.已知等比数列的首项,公比,则()A. B. C. D.10.在中,,为边上的一点,且,若为的角平分线,则的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在数列中,,,若,则的前项和取得最大值时的值为__________.12.已知,则__________.13.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.14.sin750°=15.圆上的点到直线的距离的最小值是______.16.若,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=2sinxcosx﹣2sin2x,其中x∈R,(1)求函数f(x)的值域及最小正周期;(2)如图,在四边形ABCD中,AD=3,BD,f(A)=0,BC⊥BD,BC=5,求△ABC的面积S△ABC.18.数列中,,,.(1)证明:数列是等比数列.(2)若,,且,求的值.19.数列的前项和.(1)求的通项公式;(2)设,求数列的前项和,并求使成立的实数最小值.20.设数列,,已知,,(1)求数列的通项公式;(2)设为数列的前项和,对任意.(i)求证:;(ii)若恒成立,求实数的取值范围.21.已知数列的前项和为,且,.(1)试写出数列的任意前后两项(即、)构成的等式;(2)用数学归纳法证明:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:A.方向上的投影为,即,所以A正确;B.,所以B错误;C.,所以,所以C正确;D.,所以.D正确.考点:向量的数量积;向量的投影;向量的夹角.点评:熟练掌握数量积的有关性质是解决此题的关键,尤其要注意“向量的平方就等于其模的平方”这条性质.2、C【解析】或(舍),故选C.3、B【解析】

根据坐标形式下向量的平行对应的等量关系,即可计算出的值,再根据坐标形式下向量的加法即可求解出的坐标表示.【详解】因为且,所以,所以,所以.故选:B.【点睛】本题考查根据坐标形式下向量的平行求解参数以及向量加法的坐标运算,难度较易.已知,若则有.4、B【解析】

由三视图还原几何体,可知该几何体是由边长为的正方体切割得到的四棱锥,可知所求外接球即为正方体的外接球,通过求解正方体外接球半径,代入球的表面积公式可得到结果.【详解】由三视图可知,几何体为如下图所示的四棱锥:由上图可知:四棱锥可由边长为的正方体切割得到该正方体的外接球即为四棱锥的外接球四棱锥的外接球半径外接球的表面积故选:【点睛】本题考查棱锥外接球表面积的求解问题,关键是能够通过三视图还原几何体,并将几何体放入正方体中,通过求解正方体的外接球表面积得到结果;需明确正方体外接球表面积为其体对角线长的一半.5、C【解析】

先通过三视图找到几何体原图,再求几何体的体积得解.【详解】由题得该几何体是一个边长为4的正方体挖去一个圆锥(圆锥底面在正方体上表面上,圆锥顶部朝下),所以几何体体积为.故选:C【点睛】本题主要考查三视图还原几何体原图,考查组合体体积的计算,意在考查学生对这些知识的理解掌握水平.6、D【解析】

根据向量的加法与减法的运算法则,即可求解,得到答案.【详解】由题意,根据向量的运算法则,可得=++==,故选D.【点睛】本题主要考查了向量的加法与减法的运算法则,其中解答中熟记向量的加法与减法的运算法则,准确化简、运算是解答的关键,着重考查了运算与求解能力,属于基础题.7、C【解析】

分别求出n=k时左端的表达式,和n=k+1时左端的表达式,比较可得“n从k到k+1”左端需增乘的代数式.【详解】当n=k时,左端=(k+1)(k+2)(k+3)…(2k),当n=k+1时,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左边需增乘的代数式是故选:C.【点睛】本题考查用数学归纳法证明等式,分别求出n=k时左端的表达式和n=k+1时左端的表达式,是解题的关键.8、D【解析】

设直线的方程为,代入点(1,0)的坐标即得解.【详解】设直线的方程为,由题得.所以直线的方程为.故选D【点睛】本题主要考查直线方程的求法,意在考查学生对该知识的理解掌握水平,属于基础题.9、B【解析】

由等比数列的通项公式可得出.【详解】解:由已知得,故选:B.【点睛】本题考查等比数列的通项公式的应用,是基础题.10、A【解析】

先根据正弦定理用角A,C表示,再根据三角形内角关系化基本三角函数形状,最后根据正弦函数性质得结果.【详解】因为,为的角平分线,所以,在中,,因为,所以,在中,,因为,所以,所以,则,因为,所以,所以,则,即的取值范围为.选A.【点睛】本题考查函数正弦定理、辅助角公式以及正弦函数性质,考查基本分析求解能力,属中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

解法一:利用数列的递推公式,化简得,得到数列为等差数列,求得数列的通项公式,得到,,得出所以,,,,进而得到结论;解法二:化简得,令,求得,进而求得,再由,解得或,即可得到结论.【详解】解法一:因为①所以②,①②,得即,所以数列为等差数列.在①中,取,得即,又,则,所以.因此,所以,,,所以,又,所以时,取得最大值.解法二:由,得,令,则,则,即,代入得,取,得,解得,又,则,故所以,于是.由,得,解得或,又因为,,所以时,取得最大值.【点睛】本题主要考查了数列的综合应用,以及数列的最值问题的求解,此类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,合理利用数列的性质是关键,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等,属于中档试题.12、【解析】13、【解析】

将甲、乙到达时间设为(以为0时刻,单位为分钟).则相见需要满足:画出图像,根据几何概型公式得到答案.【详解】根据题意:将甲、乙到达时间设为(以为0时刻,单位为分钟)则相见需要满足:画出图像:根据几何概型公式:【点睛】本题考查了几何概型的应用,意在考查学生解决问题的能力.14、1【解析】试题分析:由三角函数的诱导公式得sin750°=【考点】三角函数的诱导公式【名师点睛】本题也可以看作来自于课本的题,直接利用课本公式解题,这告诉我们一定要立足于课本.有许多三角函数的求值问题都是通过三角函数公式把一般的三角函数求值化为特殊角的三角函数求值而得解.15、【解析】

求圆心到直线的距离,用距离减去半径即可最小值.【详解】圆C的圆心为,半径为,圆心C到直线的距离为:,所以最小值为:故答案为:【点睛】本题考查圆上的点到直线的距离的最值,若圆心距为d,圆的半径为r且圆与直线相离,则圆上的点到直线距离的最大值为d+r,最小值为d-r.16、【解析】

对两边平方整理即可得解.【详解】由可得:,整理得:所以【点睛】本题主要考查了同角三角函数基本关系及二倍角的正弦公式,考查观察能力及转化能力,属于较易题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)值域为[﹣3,1],最小正周期为π;(2).【解析】

(1)化简f(x)=2sinxcosx﹣2sin2xsin2x﹣22sin(2x)﹣1,即可.(2)求得AAB,cos,可得△ABC的面积S△ABC.【详解】(1)f(x)=2sinxcosx﹣2sin2xsin2x﹣22sin(2x)﹣1,函数f(x)的值域为[﹣3,1]最小正周期为π;(2)∵f(A)=0,即sin(2A),∴A.在△ADB中,BD2=AD2+AB2﹣2AD•ABcosA⇒,解得ABcos,则sin∠ABC=cos.△ABC的面积S△ABC.【点睛】本题考查了三角恒等变形、三角形面积计算,考查余弦定理,意在考查计算能力,属于中档题.18、(1)见解析(2)9或35或133【解析】

(1)分别写出和,做商,再用表示出,代入即可得q,由可得,得证;(2)由(1)得数列的通项公式,代入并整理,根据即得m+n的值。【详解】(1)证明:因为,所以,所以.因为,所以,所以.因为,所以.故数列是以2为首项,为公比的等比数列.(2)解:由(1)可得.因为,所以,整理得,则.因为,,所以,则的值为2或4或6.当时,,,符合题意,则;当时,,,符合题意,则;当时,,,符合题意,则.综上,的值为9或35或133.【点睛】本题考查求数列通项公式和已知通项公式求参数的和,解题关键在于细心验证m取值是否满足题干要求。19、(1);(2),.【解析】

(1)由已知可先求得首项,然后由,得,两式相减后可得数列的递推式,结合得数列是等比数列,从而易得通项公式;(2)对数列可用错位相减法求其和.不等式恒成立,可转化为先求的最大值.【详解】(1)由得.由,可知,可得,即.因为,所以,故因此是首项为,公比为的等比数列,故.(2)由(1)知.所以①两边同乘以得②①②相减得从而于是,当是奇数时,,因为,所以.当是偶数时,因此.因为,所以,的最小值为.【点睛】本题考查等比数列的通项公式,前项和公式,考查错位相减法求和.适用错位相减法求和的数列一般是,其中是等差数列,是等比数列.20、(1);(2)(i)见证明;(ii)【解析】

(1)计算可知数列为等比数列;(2)(i)要证即证{}恒为0;(ii)由前两问求出再求出,带入式子,再解不等式.【详解】(1),又,是以2为首项,为公比的等比数列,;(2)(i),又恒成立,即(ii)由,,两式相加即得:,,,,当n为奇数时,随n的增大而递增,且;当n为偶数时,随n的增大而递减,且;的最大值为,的最小值为2,解得,所以实数p的取值范围为.【点睛】本类试题,注意看问题,一般情况,问题都会指明解题方向21、(1);(2)证明见解析.【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论