




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个四面体的三视图如图所示,则该四面体的表面积是()A. B.C. D.2.已知函数在上是x的减函数,则a的取值范围是()A. B. C. D.3.设等差数列{an}的前n项和为Sn,a2+a4=6,则S5等于()A.10 B.12 C.15 D.304.在中,,,则()A. B. C. D.5.各项不为零的等差数列中,,数列是等比数列,且,则()A.4 B.8 C.16 D.646.《九章算术》中,将四个面均为直角三角形的三棱锥称为鳖臑,若三棱锥为鳖臑,其中平面,,三棱锥的四个顶点都在球的球面上,则该球的体积是()A. B. C. D.7.设平面向量,,若,则等于()A. B. C. D.8.在数列中,若,,则()A. B. C. D.9.在1和19之间插入个数,使这个数成等差数列,若这个数中第一个为,第个为,当取最小值时,的值是()A.4 B.5 C.6 D.710.若函数的图象上所有的点向右平移个单位长度后得到的函数图象关于对称,则的值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设为使互不重合的平面,是互不重合的直线,给出下列四个命题:①②③④若;其中正确命题的序号为.12.设等差数列的前项和为,若,,则______.13.已知等比数列中,,,则该等比数列的公比的值是______.14.函数的最小正周期为________.15.若Sn为等比数列an的前n项的和,8a16.在三棱锥P-ABC中,平面PAB⊥平面ABC,ΔABC是边长为23的等边三角形,其中PA=PB=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的周期为,且图像上一个最低点为.(1)求的解析式(2)若函数在上至少含20个零点时,求b的最小值.18.在四棱锥中,,.(1)若点为的中点,求证:平面;(2)当平面平面时,求二面角的余弦值.19.已知向量a=(5sin(1)求cos(α+β)(2)若0<α<β<π2,且sinα=20.如图,四棱锥中,底面为平行四边形,,,底面.(1)证明:;(2)设,求点到面的距离.21.已知等差数列an满足a3=5,a6=a4(1)求数列an,b(2)设cn=anbn2
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
试题分析:由三视图可知,该几何体是如下图所示的三棱锥,其中平面平面,,且,,所以,与均为正三角形,且边长为,所以,故该三棱锥的表面各为,故选B.考点:1.三视图;2.多面体的表面积与体积.2、C【解析】
由复合函数单调性及函数的定义域得不等关系.【详解】由题意,解得.故选:C.【点睛】本题考查对数型复合函数的单调性,解题时要注意对数函数的定义域.3、C【解析】因为等差数列{an}中,a2+a4=6,故a1+a5=6,所以S5===15.故选C.4、A【解析】
本题首先可根据计算出的值,然后根据正弦定理以及即可计算出的值,最后得出结果。【详解】因为,所以.由正弦定理可知,即,解得,故选A。【点睛】本题考查根据解三角形的相关公式计算的值,考查同角三角函数的相关公式,考查正弦定理的使用,是简单题。5、D【解析】
根据等差数列性质可求得,再利用等比数列性质求得结果.【详解】由等差数列性质可得:又各项不为零,即由等比数列性质可得:本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,属于基础题.6、A【解析】
根据三棱锥的结构特征和线面位置关系,得到中点为三棱锥的外接球的球心,求得球的半径,利用球的体积公式,即可求解.【详解】由题意,如图所示,因为,且为直角三角形,所以,又因为平面,所以,则平面,得.又由,所以中点为三棱锥的外接球的球心,则外接球的半径.所以该球的体积是.故选A.【点睛】本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)利用球的截面的性质,根据勾股定理列出方程求解球的半径.7、D【解析】分析:由向量垂直的条件,求解,再由向量的模的公式和向量的数量积的运算,即可求解结果.详解:由题意,平面向量,且,所以,所以,即,又由,所以,故选D.点睛:本题主要考查了向量的数量积的运算和向量模的求解,其中解答中熟记平面向量的数量积的运算公式和向量模的计算公式是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解析】
利用倒数法构造等差数列,求解通项公式后即可求解某一项的值.【详解】∵,∴,即,数列是首项为,公差为2的等差数列,∴,即,∴.故选C.【点睛】对于形如,可将其转化为的等差数列形式,然后根据等差数列去计算.9、B【解析】
设等差数列公差为,可得,再利用基本不等式求最值,从而求出答案.【详解】设等差数列公差为,则,从而,此时,故,所以,即,当且仅当,即时取“=”,又,解得,所以,所以,故选:B.【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.10、C【解析】
先由题意求出平移后的函数解析式,再由对称中心,即可求出结果.【详解】函数的图象上所有的点向右平移个单位长度后,可得函数的图像,又函数的图象关于对称,,,故,又,时,.故选C.【点睛】本题主要考查由平移后的函数性质求参数的问题,熟记正弦函数的对称性,以及函数的平移原则即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、④【解析】试题分析:根据线面平行的判定定理,面面平行的判定定理,面面平行的性质定理,及面面垂直的性质定理,对题目中的四个结论逐一进行分析,即可得到答案.解:当m∥n,n⊂α,,则m⊂α也可能成立,故①错误;当m⊂α,n⊂α,m∥β,n∥β,m与n相交时,α∥β,但m与n平行时,α与β不一定平行,故②错误;若α∥β,m⊂α,n⊂β,则m与n可能平行也可能异面,故③错误;若α⊥β,α∩β=m,n⊂α,n⊥m,由面面平行的性质,易得n⊥β,故④正确故答案为④考点:本题考查的知识点是平面与平面之间的位置关系,直线与平面之间的位置关系.点评:熟练掌握空间线与线,线与面,面与面之间的关系的判定方法及性质定理,是解答本题的关键,属于基础题.12、10【解析】
将和用首项和公差表示,解方程组,求出首项和公式,利用公式求解.【详解】设该数列的公差为,由题可知:,解得,故.故答案为:10.【点睛】本题考查由基本量计算等差数列的通项公式以及前项和,属基础题.13、【解析】
根据等比通项公式即可求解【详解】故答案为:【点睛】本题考查等比数列公比的求解,属于基础题14、.【解析】
根据正切型函数的周期公式可计算出函数的最小正周期.【详解】由正切型函数的周期公式得,因此,函数的最小正周期为,故答案为.【点睛】本题考查正切型函数周期的求解,解题的关键在于正切型函数周期公式的应用,考查计算能力,属于基础题.15、-7【解析】设公比为q,则8a1q=-a116、65π【解析】
本题首先可以通过题意画出图像,然后通过三棱锥的图像性质以及三棱锥的外接球的相关性质来确定圆心的位置,最后根据各边所满足的几何关系列出算式,即可得出结果。【详解】如图所示,作AB中点D,连接PD、CD,在CD上作三角形ABC的中心E,过点E作平面ABC的垂线,在垂线上取一点O,使得PO=OC。因为三棱锥底面是一个边长为23的等边三角形,E所以三棱锥的外接球的球心在过点E的平面ABC的垂线上,因为PO=OC,P、C两点在三棱锥的外接球的球面上,所以O点即为球心,因为平面PAB⊥平面ABC,PA=PB,D为AB中点,所以PD⊥平面ABCCD=CA2-ADPD=P设球的半径为r,则有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面积为S=4πr【点睛】本题考查三棱锥的相关性质,主要考查三棱锥的外接球的相关性质,考查如何通过三棱锥的几何特征来确定三棱锥的外接球与半径,考查推理能力,考查化归与转化思想,是难题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由周期得,利用最低点坐标可得,得解析式;(2)直接求出零点,根据零点排列得出有20个零点时,的最小值.【详解】(1)由最低点为,得,由,得,由点在图像上得,即,,即,又,,.(2)由(1)得,周期,在长为的闭区间内有2个或3个零点,由,得,或,所以或..又,则当时恰有20个零点,此时b的最小值为.【点睛】本题考查求三角函数解析式,考查函数的零点个数问题.掌握三角函数的性质如周期性质,最值是解本题的基础.本题零点问题可直接求出零点,然后由零点分析得出结论.18、(1)见解析;(2).【解析】
(I)结合平面与平面平行判定,得到平面BEM平行平面PAD,结合平面与平面性质,证明结论.(II)建立空间坐标系,分别计算平面PCD和平面PDB的法向量,结合向量数量积公式,计算余弦值,即可.【详解】(Ⅰ)取的中点为,连结,.由已知得,为等边三角形,.∵,,∴,∴,∴.又∵平面,平面,∴∥平面.∵为的中点,为的中点,∴∥.又∵平面,平面,∴∥平面.∵,∴平面∥平面.∵平面,∴∥平面.(Ⅱ)连结,交于点,连结,由对称性知,为的中点,且,.∵平面平面,,∴平面,,.以为坐标原点,的方向为轴正方向,建立空间直角坐标系.则(0,,0),(3,0,0),(0,0,1).易知平面的一个法向量为.设平面的法向量为,则,,∴,∵,,∴.令,得,∴,∴.设二面角的大小为,则.【点睛】本道题考查了平面与平面平行判定和性质,考查了空间向量数量积公式,关键建立空间坐标系,难度偏难.19、(1)cos(α+β)=2【解析】
(1)根据向量数列积的坐标运算,化简整理得到5cos(2)根据题中条件求出cosα=310再由cos(2α+β)=【详解】解:(1)因为a=(所以a⋅=5因为a⋅b=2,所以5(2)因为0<α<π2,因为0<α<β<π2,所以因为cos(α+β)=2所以cos因为0<α<β<π2,所以0<2α+β<【点睛】本题主要考查三角恒等变换,熟记两角和的余弦公式即可,属于常考题型.20、(1)见解析(2)【解析】试题分析:(Ⅰ)要证明线线垂直,一般用到线面垂直的性质定理,即先要证线面垂直,首先由已知底面.知,因此要证平面,从而只要证,这在中可证;(Ⅱ)要求点到平面的距离,可过点作平面的垂线,由(Ⅰ)的证明,可得平面,从而有平面,因此平面平面,因此只要过作于,则就是的要作的垂线,线段的长就是所要求的距离.试题解析:(Ⅰ)证明:因为,,由余弦定理得.从而,∴,又由底面,面,可得.所以平面.故.(Ⅱ)解:作,垂足为.已知底面,则,由(Ⅰ)知,又,所以.故平面,.则平面.由题设知,,则,,根据,得,即点到面的距离为.考点:线面垂直的判定与性质.点到平面的距离.21、(1)an=2n-1,【解析】
(1)利用等差数列、等比数列的通项公式即可求得;(2)由(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓库防水合同样本
- 二零二五版车用尿素合同范例
- 二零二五版校医聘用合同
- 二零二五房地产租赁居间协议
- 二零二五版担保的法律意见书
- 住宅雨棚加工合同标准文本
- 家政雇佣协议合同书
- 合资企业股权转让协议书范例二零二五年
- 全屋订制合同标准文本
- 临时送货合同样本
- 综合录井仪工作原理演示教学课件
- 小学三年级诗词大会初赛比赛题目课件
- 房建监理大纲(共114)
- 国际工程招投标流程图
- 城市环境卫生工作物资消耗定额
- 液化气站三级安全教育培训试题
- 经济法实用教程(理论部分)(第八版)(何辛)案例分析及参考答案
- 532近代前夜的危机
- 病原微生物实验室生物安全备案专家意见表
- (精心整理)朱德熙_说 “的”
- 《雷锋叔叔,你在哪里》说课稿(附优质教案)
评论
0/150
提交评论