2023届河南省许昌市高一数学第二学期期末联考试题含解析_第1页
2023届河南省许昌市高一数学第二学期期末联考试题含解析_第2页
2023届河南省许昌市高一数学第二学期期末联考试题含解析_第3页
2023届河南省许昌市高一数学第二学期期末联考试题含解析_第4页
2023届河南省许昌市高一数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,是两个不同的平面,,是两条不同的直线,且,()A.若,则 B.若,则C.若,则 D.若,则2.从装有红球和绿球的口袋内任取2个球(其中红球和绿球都多于2个),那么互斥而不对立的两个事件是()A.至少有一个红球,至少有一个绿球B.恰有一个红球,恰有两个绿球C.至少有一个红球,都是红球D.至少有一个红球,都是绿球3.已知等差数列的前n项和为,则A.140 B.70 C.154 D.774.已知圆柱的轴截面为正方形,且该圆柱的侧面积为,则该圆柱的体积为A. B. C. D.5.已知,,且,则实数等于()A.-1 B.-9 C.3 D.96.如果直线a平行于平面,则()A.平面内有且只有一直线与a平行B.平面内有无数条直线与a平行C.平面内不存在与a平行的直线D.平面内的任意直线与直线a都平行7.已知函数f(x)=5sinωx-π3(ω>0),若A.0,16 B.0,168.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°9.若,则在中,正数的个数是()A.16 B.72 C.86 D.10010.过点A(3,3)且垂直于直线的直线方程为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最大值是__________.12.已知点,点,则________.13.已知为数列{an}的前n项和,且,,则{an}的首项的所有可能值为______14.已知,若直线与直线垂直,则的最小值为_____15.若数列的前4项分别是,则它的一个通项公式是______.16.过点作直线与圆相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求(x)的最小正周期和单调递增区间;(2)求f(x)在区间上的最大值和最小值.18.如图所示,是正三角形,线段和都垂直于平面,设,,且为的中点.(1)求证:平面;(2)求平面与平面所成的较小二面角的大小19.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如下表:时间周一周二周三周四周五车流量×(万辆)5051545758PM2.5的浓度(微克/立方米)6070747879(1)根据上表数据,用最小二乘法求出y关于x的线性回归方程;(2)若周六同一时间段的车流量是25万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少(保留整数)?参考公式:由最小二乘法所得回归直线的方程是:,其中,20.已知公差不为0的等差数列{an}满足a3=9,a(1)求{a(2)设数列{bn}满足bn=1n(21.如图,在正方形中,点是的中点,点是的中点,将分别沿折起,使两点重合于,连接.(1)求证:;(2)点是上一点,若平面,则为何值?并说明理由.(3)若,求二面角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】试题分析:由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得,可得考点:空间线面平行垂直的判定与性质2、B【解析】由于从口袋中任取2个球有三个事件,恰有一个红球,恰有两个绿球,一红球和一绿球.所以恰有一个红球,恰有两个绿球是互斥而不对立的两个事件.因而应选B.3、D【解析】

利用等差数列的前n项和公式,及等差数列的性质,即可求出结果.【详解】等差数列的前n项和为,.故选D.【点睛】本题考查等差数列的前n项和的求法和等差数列的性质,属于基础题.4、C【解析】

设圆柱的底面半径,该圆柱的高为,利用侧面积得到半径,再计算体积.【详解】设圆柱的底面半径.因为圆柱的轴截面为正方形,所以该圆柱的高为因为该圆柱的侧面积为,所以,解得,故该圆柱的体积为.故答案选C【点睛】本题考查了圆柱的体积,意在考查学生的计算能力和空间想象能力.5、C【解析】

由可知,再利用坐标公式求解.【详解】因为,,且,所以,即,解得,故选:C.【点睛】本题考查向量的坐标运算,解题关键是明确.6、B【解析】

根据线面平行的性质解答本题.【详解】根据线面平行的性质定理,已知直线平面.

对于A,根据线面平行的性质定理,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故A错误;

对于B,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故B正确;

对于C,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,所以C错误;

对于D,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,则在平面内与直线相交的直线与a不平行,所以D错误;

故选:B.【点睛】本题考查了线面平行的性质定理;如果直线与平面平行,那么过直线的平面与已知平面相交,直线与交线平行.7、B【解析】

由题得ωπ-π3<ωx-【详解】因为π<x≤2π,ω>0,所以ωπ-π因为fx在区间(π,2π]所以ωπ-π3≥kπ解得k+13≤ω<因为k+1所以-4因为k∈Z,所以k=-1或k=0.当k=-1时,0<ω<16;当k=0时,故选:B【点睛】本题主要考查三角函数的零点问题和三角函数的图像和性质,意在考查学生对该知识的理解掌握水平,属于中档题.8、C【解析】如图:是底面中心,是侧棱与底面所成的角;在直角中,故选C9、C【解析】

令,则,当1≤n≤14时,画出角序列终边如图,其终边两两关于x轴对称,故有均为正数,而,由周期性可知,当14k-13≤n≤14k时,Sn>0,而,其中k=1,2,…,7,所以在中有14个为0,其余都是正数,即正数共有100-14=86个,故选C.10、D【解析】过点A(3,3)且垂直于直线的直线斜率为,代入过的点得到.故答案为D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:利用两角和正弦公式简化为y=,从而得到函数的最大值.详解:y=sinx+cosx==.∴函数的最大值是故答案为点睛:本题考查了两角和正弦公式,考查了正弦函数的图象与性质,属于基础题.12、【解析】

直接利用两点间的距离公式求解即可.【详解】点A(2,1),B(5,﹣1),则|AB|.故答案为:.【点睛】本题考查两点间的距离公式的应用,基本知识的考查.13、【解析】

根据题意,化简得,利用式相加,得到,进而得到,即可求解结果.【详解】因为,所以,所以,将以上各式相加,得,又,所以,解得或.【点睛】本题主要考查了数列的递推关系式应用,其中解答中利用数列的递推关系式,得到关于数列首项的方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.14、8【解析】

两直线斜率存在且互相垂直,由斜率乘积为-1求得等式,把目标式子化成,运用基本不等式求得最小值.【详解】设直线的斜率为,,直线的斜率为,,两条直线垂直,,整理得:,,等号成立当且仅当,的最小值为.【点睛】利用“1”的代换,转化成可用基本不等式求最值,考查转化与化归的思想.15、【解析】

根据等比数列的定义即可判断出该数列是以为首项,为公比的等比数列,根据等比数列的通项公式即可写出该数列的一个通项公式.【详解】解:∵,该数列是以为首项,为公比的等比数列,该数列的通项公式是:,故答案为:.【点睛】本题主要考查等比数列的定义以及等比数列的通项公式,属于基础题.16、【解析】

根据圆的性质可求得最长弦和最短弦的长度,从而得到所有弦长为整数的直线条数,从中找到长度不超过的直线条数,根据古典概型求得结果.【详解】由题意可知,最长弦为圆的直径:在圆内部且圆心到的距离为最短弦长为:弦长为整数的直线的条数有:条其中长度不超过的条数有:条所求概率:本题正确结果:【点睛】本题考查古典概型概率问题的求解,涉及到过圆内一点的最长弦和最短弦的长度的求解;易错点是忽略圆的对称性,造成在求解弦长为整数的直线的条数时出现丢根的情况.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),的增区间是.(2).【解析】试题分析:(1)利用两角和正弦公式和降幂公式化简,得到的形式,利用公式计算周期.(2)利用正弦函数的单调区间,再求的单调性.(3)求三角函数的最小正周期一般化成,,形式,利用周期公式即可.(4)求解较复杂三角函数的单调区间时,首先化成形式,再的单调区间,只需把看作一个整体代入相应的单调区间,注意先把化为正数,这是容易出错的地方.试题解析:(1)因为-1=-1,故最小正周期为得故的增区间是.(2)因为,所以.于是,当,即时,取得最大值2;当,即时,取得最小值-1.考点:(1)求三角函数的周期和单调区间;(2)求三角函数在闭区间的最值.18、(1)见解析(2)【解析】

(1)取的中点,连接,先证即说明,再由线面平行的判定定理说明平面.(2)延长交的延长线于,连.说明为所求二面角的平面角.再计算即可.【详解】解:(1)如图所示,取的中点,连接.∵,∴.又,∴.∴四边形为平行四边形.故.∵平面,平面,∴平面.(2)延长交的延长线于,连.由,知,为的中点,又为的中点,∴.又平面,,∴平面.∴为所求二面角的平面角.在等腰直角三角形中,易求.故所求二面角的大小为.【点睛】本题考查线面平行、二面角的平面角,属于中档题.19、(1);(2)37【解析】

(1)根据题中所给公式分别求出相关数据即可得解;(2)将代入(1)所得直线方程即可得解.【详解】(1),故y关于x的线性回归方程是:(2)当时,所以可以预测此时PM2.5的浓度约为37.【点睛】此题考查根据已知数据求回归直线的方程,根据公式直接求解,利用所得回归直线方程进行预测.20、(1)an=4n-3【解析】

(1)根据条件列方程组,求出首项和公差即可得出通项公式;(2)利用裂项相消法求和.【详解】(1)设等差数列an的公差为d(d≠0)a1解得d=4或d=0(舍去),a1∴a(2)∵b∴S=1【点睛】本题考查了等差数列的通项公式,考查了利用裂项相消进行数列求和的方法,属于基础题.21、(1)证明见详解;(2),理由见详解;(3).【解析】

(1)通过证明EF平面PBD,即可证明;(2)通过线面平行,将问题转化为线线平行,在平面图形中根据线段比例进而求解;(3)根据(1)(2)所得,找到二面角的平面角,然后再进行求解.【详解】(1)证明:因为四边形ABCD为正方形,故DAAE,DC,即折叠后的DP又因为平面PEF,平面PEF,故DP平面PEF,又平面PEF,故.在正方形ABCD中,容易知EF,又平面PBD,平面PBD,故EF平面PBD,又平面PBD故,即证.(2)连接BD交EF于O,连接OM,作图如下因为//平面,平面PBD,平面PBD平面=MO故//MO在中,由,以及E、F分别是正方形ABCD两边的中点,故可得即为所求.(3)过M作MH垂直于BD,垂足为H,连接OP,作图如下:由(1)可知:EF平面PBD,因为MH平面PBD,故EF又,平面EDF,BD平面EDF,故MH平面EDF,又因为BDEF,故即为所求二面角的平面角.设正方形ABCD的边长为4,因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论