2023届河北省正定县一中高一数学第二学期期末学业水平测试试题含解析_第1页
2023届河北省正定县一中高一数学第二学期期末学业水平测试试题含解析_第2页
2023届河北省正定县一中高一数学第二学期期末学业水平测试试题含解析_第3页
2023届河北省正定县一中高一数学第二学期期末学业水平测试试题含解析_第4页
2023届河北省正定县一中高一数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某同学用收集到的6组数据对(xi,yi)(i=1,2,3,4,5,6)制作成如图所示的散点图(点旁的数据为该点坐标),并由最小二乘法计算得到回归直线l的方程:x,相关指数为r.现给出以下3个结论:①r>0;②直线l恰好过点D;③1;其中正确的结论是A.①② B.①③C.②③ D.①②③2.在中,内角所对的边分别为,且,则()A. B. C. D.3.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或 C.或 D.或4.已知为等差数列,其前项和为,若,,则公差等于()A. B. C. D.5.从装有2个红球和2个黑球的口袋内任取2个球,则互斥而不对立的两个事件是()A.恰有1个黑球与恰有2个黑球 B.至少有一个红球与都是黑球C.至少有一个黑球与至少有1个红球 D.至少有一个黑球与都是黑球6.已知x,x134781016y57810131519则线性回归方程y=A.(8,10) B.(8,11) C.(7,10) D.(7,11)7.圆与直线的位置关系为()A.相离 B.相切C.相交 D.以上都有可能8.函数的最小值为(

)A.6 B.7 C.8 D.99.设变量想x、y满足约束条件为则目标函数的最大值为()A.0 B.-3 C.18 D.2110.已知A(-3,8),B(2,2),在x轴上有一点M,使得|MA|+|MB|最短,则点M的坐标是()A.(-1,0) B.(1,0) C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某地甲乙丙三所学校举行高三联考,三所学校参加联考的人数分别为200、300、400。现为了调查联考数学学科的成绩,采用分层抽样的方法在这三所学校中抽取一个样本,已知甲学校中抽取了40名学生的数学成绩,那么在丙学校中抽取的数学成绩人数为_________。12.直线的倾斜角的大小是_________.13.终边经过点,则_____________14.已知两点A(2,1)、B(1,1+)满足=(sinα,cosβ),α,β∈(﹣,),则α+β=_______________15.若是等比数列,,,则________16.数列的前项和,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校团委会组织某班以小组为单位利用周末时间进行一次社会实践活动,每个小组有5名同学,在活动结束后,学校团委会对该班的所有同学进行了测试,该班的A,B两个小组所有同学得分(百分制)的茎叶图如图所示,其中B组一同学的分数已被污损,但知道B组学生的平均分比A组同学的平均分高一分.(1)若在B组学生中随机挑选1人,求其得分超过86分的概率;(2)现从A、B两组学生中分别随机抽取1名同学,设其分数分别为m、n,求的概率.18.如图,在四边形中,已知,,(1)若,且的面积为,求的面积:(2)若,求的最大值.19.在平面直角坐标系中,已知向量,.(1)求证:且;(2)设向量,,且,求实数的值.20.设,若存在,使得,且对任意,均有(即是一个公差为的等差数列),则称数列是一个长度为的“弱等差数列”.(1)判断下列数列是否为“弱等差数列”,并说明理由.①1,3,5,7,9,11;②2,,,,.(2)证明:若,则数列为“弱等差数列”.(3)对任意给定的正整数,若,是否总存在正整数,使得等比数列:是一个长度为的“弱等差数列”?若存在,给出证明;若不存在,请说明理由21.已知数列满足,,其中实数.(I)求证:数列是递增数列;(II)当时.(i)求证:;(ii)若,设数列的前项和为,求整数的值,使得最小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由图可知这些点分布在一条斜率大于零的直线附近,所以为正相关,即相关系数因为所以回归直线的方程必过点,即直线恰好过点;因为直线斜率接近于AD斜率,而,所以③错误,综上正确结论是①②,选A.2、C【解析】

根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sinA,进而利用二倍角余弦公式得到结果.【详解】∵.∴sinAcosB=4sinCcosA﹣sinBcosA即sinAcosB+sinBcosA=4cosAsinC∴sinC=4cosAsinC∵1<C<π,sinC≠1.∴1=4cosA,即cosA,那么.故选C【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.3、C【解析】

由题意可知:点在反射光线上.设反射光线所在的直线方程为:,利用直线与圆的相切的性质即可得出.【详解】由题意可知:点在反射光线上.设反射光线所在的直线方程为:,即.由相切的性质可得:,化为:,解得或.故选.【点睛】本题考查了直线与圆相切的性质、点到直线的距离公式、光线反射的性质,考查了推理能力与计算能力,属于中档题.4、C【解析】

由题意可得,又,所以,故选C.【点睛】本题考查两个常见变形公式和.5、A【解析】

从装有2个红球和2个黑球的口袋中任取2个球,包括3种情况:①恰有一个黑球,②恰有两个黑球,③没有黑球.

故恰有一个黑球与恰有两个黑球不可能同时发生,它们是互斥事件,再由这两件事的和不是必然事件,故他们是互斥但不对立的事件,

故选:A.6、D【解析】

先计算x,【详解】x=线性回归方程y=a+故答案选D【点睛】本题考查了回归方程,回归方程一定过数据中心点.7、C【解析】

由直线方程可确定其恒过的定点,由点与圆的位置关系的判定方法知该定点在圆内,则可知直线与圆相交.【详解】由得:直线恒过点在圆内部直线与圆相交故选:【点睛】本题考查直线与圆位置关系的判定,涉及到直线恒过定点的求解、点与圆的位置关系的判定,属于常考题型.8、C【解析】

直接利用均值不等式得到答案.【详解】,时等号成立.故答案选C【点睛】本题考查了均值不等式,属于简单题.9、C【解析】

画出可行域如下图所示,由图可知,目标函数在点处取得最大值,且最大值为.故选C.【点睛】本小题主要考查利用线性规划求线性目标函数的最大值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画图可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.10、B【解析】

由集合性质可知,求出点A关于x轴的对称点,此对称点与点B确定的直线与x轴的交点,即为点M.【详解】点A关于x轴的对称点C的坐标为:,由两点可得直线BC方程为:,可求得与y轴的交点为.故选B.【点睛】本题考查最短路径问题,辅助作图更易理解,注意求直线方程时要熟练使用最简便的方式,注意计算的准确性.二、填空题:本大题共6小题,每小题5分,共30分。11、80【解析】

由题意,求得甲乙丙三所学校抽样比为,再根据甲学校中抽取了40名学生的数学成绩,即可求解丙学校应抽取的人数,得到答案.【详解】由题意知,甲乙丙三所学校参加联考的人数分别为200、300、400,所以甲乙丙三所学校抽样比为,又由甲学校中抽取了40名学生的数学成绩,所以在丙学校应抽取人.【点睛】本题主要考查了分层抽样概念及其应用,其中解答中熟记分层抽样的概念,以及计算的方法是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】试题分析:由题意,即,∴.考点:直线的倾斜角.13、【解析】

根据正弦值的定义,求得正弦值.【详解】依题意.故答案为:【点睛】本小题主要考查根据角的终边上一点的坐标求正弦值,属于基础题.14、或0【解析】

运用向量的加减运算和特殊角的三角函数值,可得所求和.【详解】两点A(2,1)、B(1,1)满足(sinα,cosβ),可得(﹣1,)=(,)=(sinα,cosβ),即为sinα,cosβ,α,β∈(),可得α,β=±,则α+β=0或.故答案为0或.【点睛】本题考查向量的加减运算和三角方程的解法,考查运能力,属于基础题.15、【解析】

根据等比数列的通项公式求解公比再求和即可.【详解】设公比为,则.故故答案为:【点睛】本题主要考查了等比数列的基本量求解,属于基础题型.16、【解析】

根据数列前项和的定义即可得出.【详解】解:因为所以.故答案为:.【点睛】考查数列的定义,以及数列前项和的定义,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)求出A组学生的平均分可得B组学生的平均分,设被污损的分数为X,列方程得X,从而得到B组学生的分数,其中有3人分数超过86分,由此能求出B组学生中随机挑选1人,其得分超过86分概率.(2)利用列举法写出在A、B两组学生中随机抽取1名同学,其分数组成的所有基本事件(m,n),利用古典概型求出|m﹣n|≥8的概率.【详解】(1)A组学生的平均分为,所以B组学生的平均分为86分设被污损的分数为,则,解得所以B组学生的分数为91、93、83、88、75,其中有3人分数超过86分在B组学生中随机挑选1人,其得分超过86分概率为.(2)A组学生的分数分别是94、80、86、88、77,B组学生的分数为91、93、83、88、75,在A、B两组学生中随机抽取1名同学,其分数组成的基本事件(m,n),有(94,91),(94,93),(94,83),(94,88),(94,75),(80,91),(80,93),(80,83),(80,88),(80,75),(86,91),(86,93),(86,83),(86,88),(86,75),(88,91),(88,93),(88,83),(88,88),(88,75),(77,91),(77,93),(77,83),(77,88),(77,75),共25个随机各抽取1名同学的分数满足的基本事件有(94,83),(94,75),(80,91),(80,93),(80,88),(86,75),(88,75),(77,91),(77,93),(77,88),共10个∴的概率为.【点睛】本题考查概率的求法,考查古典概型、列举法、茎叶图等基础知识,考查了推理能力与计算能力,是基础题.18、(1);(2)3【解析】

(1)根据可解出,验证出,从而求得所求面积;(2)设,,在中利用余弦定理构造关于的方程;在中分别利用正余弦定理可得到和,代入可求得;根据三角函数最值可求得的最大值,即可得到结果.【详解】(1)由得:,即(2)设,在中,由正弦定理得:…①由余弦定理得:…②在中,由余弦定理得:将①②代入整理得:当,即时,取最大值【点睛】本题考查解三角形的相关知识,涉及到正弦定理、余弦定理和三角形面积公式的应用;本题中线段长度最值的求解的关键是能够利用正余弦定理构造方程,将问题转化为三角函数最值的求解问题.19、(1)证明见解析(2)【解析】

(1)根据向量的坐标求出向量模的方法以及向量的数量积即可求解.(2)根据向量垂直,可得数量积等于,进而解方程即可求解.【详解】(1)证明:,,所以,因为,所以;(2)因为,所以,由(1)得:所以,解得.【点睛】本题考查了向量坐标求向量的模以及向量数量积的坐标表示,属于基础题.20、(1)①是,②不是,理由见解析(2)证明见解析(3)存在,证明见解析【解析】

(1)①举出符合条件的具体例子即可;②反证法推出矛盾;

(2)根据题意找出符合条件的为等差数列即可;

(3)首先,根据,将公差表示出来,计算任意相邻两项的差值可以发现不大于.那么用裂项相消的方法表示出,结合相邻两项差值不大于可以得到,接下来,只需证明存在满足条件的即可.用和公差表示出,并展开可以发现多项式的最高次项为,而已知,因此在足够大时显然成立.结论得证.【详解】解:(1)数列①:1,3,5,7,9,11是“弱等差数列”

取分别为1,3,5,7,9,11,13即可;

数列②2,,,,不是“弱等差数列”

否则,若数列②为“弱等差数列”,则存在实数构成等差数列,设公差为,

,又与矛盾,所以数列②2,,,,不是“弱等差数列”;

(2)证明:设,

令,取,则,

则,

就有,命题成立.

故数列为“弱等差数列”;(3)若存在这样的正整数,使得

成立.

因为,,

则,其中待定.

从而,

又,∴当时,总成立.

如果取适当的,使得,又有

所以,有

为使得,需要,

上式左侧展开为关于的多项式,最高次项为,其次数为,

故,对于任意给定正整数,当充分大时,上述不等式总成立,即总存在满足条件的正整数,使得等比数列:是一个长度为的“弱等差数列”.【点睛】本题要求学生能够从已知分析出“弱等差数列”要想成立所应该具备的要求,进而进行推理,转

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论