2023届广东省揭阳一中、金山中学数学高一下期末监测模拟试题含解析_第1页
2023届广东省揭阳一中、金山中学数学高一下期末监测模拟试题含解析_第2页
2023届广东省揭阳一中、金山中学数学高一下期末监测模拟试题含解析_第3页
2023届广东省揭阳一中、金山中学数学高一下期末监测模拟试题含解析_第4页
2023届广东省揭阳一中、金山中学数学高一下期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设不等式组所表示的平面区域为,在内任取一点,的概率是()A. B. C. D.2.已知是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则3.已知等差数列的前项和为,若,,则的值为()A. B.0 C. D.1824.在△ABC中,sinA:sinB:sinC=4:3:2,则cosA的值是()A. B. C. D.5.已知、都是公差不为0的等差数列,且,,则的值为()A.2 B.-1 C.1 D.不存在6.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.77.化为弧度是A. B. C. D.8.某船从处向东偏北方向航行千米后到达处,然后朝西偏南的方向航行6千米到达处,则处与处之间的距离为()A.千米 B.千米 C.3千米 D.6千米9.在中,,,则()A.或 B. C. D.10.若变量,满足约束条件,且的最大值为,最小值为,则的值是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,,,点在线段上,若,则的面积是_____.12.有一个底面半径为2,高为2的圆柱,点,分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点或的距离不大于1的概率是________.13.在等差数列中,,,则公差______.14.若,则________.15.已知锐角的外接圆的半径为1,,则的面积的取值范围为_____.16.对任意实数,不等式恒成立,则实数的取值范围是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别是,已知,,.(1)求的值;(2)若角为锐角,求的值及的面积.18.如图,三角形中,,是边长为l的正方形,平面底面,若分别是的中点.(1)求证:底面;(2)求几何体的体积.19.已知函数(1)解不等式;(2)若对一切,不等式恒成立,求实数的取值范围.20.(1分)设数列{an}是公比为正数的等比数列,a1=2,a3﹣a2=1.(1)求数列{an}的通项公式;(2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.21.已知关于的函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若对任意的恒成立,求实数的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】作出约束条件所表示的平面区域,如图所示,四边形所示,作出直线,由几何概型的概率计算公式知的概率,故选A.2、D【解析】

根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【详解】对于A选项,直线有可能在平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能平行,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选D.【点睛】本小题主要考查空间线、面位置关系的判断,属于基础题.3、B【解析】

由,可得,可得的值.【详解】解:已知等差数列中,可得,即:,,故选B【点睛】本题主要考查等差数列的性质,从数列自身的特点入手是解决问题的关键.4、A【解析】

由正弦定理可得,再结合余弦定理求解即可.【详解】解:因为在△ABC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故选:A.【点睛】本题考查了正弦定理及余弦定理,重点考查了运算能力,属基础题.5、C【解析】

首先根据求出数列、公差之间的关系,再代入即可。【详解】因为和都是公差不为零的等差数列,所以设故,可得又因为和代入则.故选:C.【点睛】本题主要考查了极限的问题以及等差数列的通项属于基础题。6、B【解析】

分析:由公式计算可得详解:设事件A为只用现金支付,事件B为只用非现金支付,则因为所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.7、D【解析】

由于,则.【详解】因为,所以,故选D.【点睛】本题考查角度制与弧度制的互化.8、B【解析】

通过余弦定理可得答案.【详解】设处与处之间的距离为千米,由余弦定理可得,则.【点睛】本题主要考查余弦定理的实际应用,难度不大.9、C【解析】

由正弦定理计算即可。【详解】由题根据正弦定理可得即,解得,所以为或,又因为,所以为故选C.【点睛】本题考查正弦定理,属于简单题。10、C【解析】由,由,当最大时,最小,此时最小,,故选C.【点睛】本题除了做约束条件的可行域再平移求得正解这种常规解法之外,也可以采用构造法解题,这就要求考生要有较强的观察能力,或者采用设元求出构造所学的系数.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

过作于,设,运用勾股定理和三角形的面积公式,计算可得所求值.【详解】过作于,设,,,,又,可得,即有,可得的面积为.故答案为.【点睛】本题考查解三角形,考查勾股定理的运用,以及三角形的面积公式,考查化简运算能力,属于基础题.12、【解析】

本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点到点,的距离不大于1的概率;【详解】解:由题意可知,点P到点或的距离都不大于1的点组成的集合分别以、为球心,1为半径的两个半球,其体积为,又该圆柱的体积为,则所求概率为.故答案为:【点睛】本题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.13、3【解析】

根据等差数列公差性质列式得结果.【详解】因为,,所以.【点睛】本题考查等差数列公差,考查基本分析求解能力,属基础题.14、【解析】

观察式子特征,直接写出,即可求出。【详解】观察的式子特征,明确各项关系,以及首末两项,即可写出,所以,相比,增加了后两项,少了第一项,故。【点睛】本题主要考查学生的数学抽象能力,正确弄清式子特征是解题关键。15、【解析】

由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面积公式,三角函数恒等变换的应用可求S△ABC═sin(2B﹣)+,由锐角三角形求B的范围,进而利用正弦函数的图象和性质即可得解.【详解】解:∵锐角△ABC的外接圆的半径为1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C为锐角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案为:(1,].【点睛】本题主要考查了正弦定理,三角形面积公式,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.16、【解析】

分别在和两种情况下进行讨论,当时,根据二次函数图像可得不等式组,从而求得结果.【详解】①当,即时,不等式为:,恒成立,则满足题意②当,即时,不等式恒成立则需:解得:综上所述:本题正确结果:【点睛】本题考查不等式恒成立问题的求解,易错点是忽略不等式是否为一元二次不等式,造成丢根;处理一元二次不等式恒成立问题的关键是结合二次函数图象来得到不等关系,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),.【解析】试题分析:(1)根据题意和正弦定理求出a的值;

(2)由二倍角的余弦公式变形求出,由的范围和平方关系求出,由余弦定理列出方程求出的值,代入三角形的面积公式求出的面积.试题解析:(1)因为,,由正弦定理,得.(2)因为,且,所以,.由余弦定理,得,解得或(舍),所以.18、(1)证明见解析;(2).【解析】试题分析:(1)通过面面平行证明线面平行,所以取的中点,的中点,连接.只需通过证明HG//BC,HF//AB来证明面GHF//面ABC,从而证明底面.(2)原图形可以看作是以点C为顶点,ABDE为底的四棱锥,所四棱锥的体积公式可求得体积.试题解析:(1)取的中点,的中点,连接.(如图)∵分别是和的中点,∴,且,,且.又∵为正方形,∴,.∴且.∴为平行四边形.∴,又平面,∴平面.(2)因为,∴,又平面平面,平面,∴平面.∵三角形是等腰直角三角形,∴.∵是四棱锥,∴.【点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.19、(1);(2)【解析】

(1)根据一元二次不等式的求解方法直接求解即可;(2)将问题转化为恒成立的问题,通过基本不等式求得的最小值,则.【详解】(1)或所求不等式解集为:(2)当时,可化为:又(当且仅当,即时取等号)即的取值范围为:【点睛】本题考查一元二次不等式的求解、恒成立问题的求解问题.解决恒成立问题的关键是通过分离变量的方式,将问题转化为所求参数与函数最值之间的比较问题.20、(1)an=2×【解析】试题分析:(1)设出等比数列{an}的公比q,利用条件a1=4,a3﹣a4(4)数列{an+bn}是由一个等差数列和一个等比数列对应项相加得来的,所以可以采用拆项分组的方法,转化为等差数列、等比数列的前n项和问题来解决.试题解析:解:(1)设数列{an}的公比为q,由a1=4,a3﹣a4=1,得:4q4﹣4q﹣1=4,即q4﹣q﹣6=4.解得q=3或q=﹣4,∵q>4,∴q=﹣4不合题意,舍去,故q=3.∴an=4×3n﹣1;(4)∵数列{bn}是首项b1=1,公差d=4的等差数列,∴bn=4n﹣1,∴Sn=(a1+a4++an)+(b1+b4++bn)=+=3n﹣1+n4.考点:等差数列与等比数列.21、(Ⅰ);(Ⅱ)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论