2023届福建省安溪六中高一数学第二学期期末检测模拟试题含解析_第1页
2023届福建省安溪六中高一数学第二学期期末检测模拟试题含解析_第2页
2023届福建省安溪六中高一数学第二学期期末检测模拟试题含解析_第3页
2023届福建省安溪六中高一数学第二学期期末检测模拟试题含解析_第4页
2023届福建省安溪六中高一数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.把一块长是10,宽是8,高是6的长方形木料削成一个体积最大的球,这个球的体积等于()A. B.480 C. D.2.点到直线(R)的距离的最大值为A. B. C.2 D.3.阅读如图所示的算法框图,输出的结果S的值为A.8 B.6 C.5 D.44.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789ABCDEF10进制0123456789101112131415现在,将十进制整数2019化成16进制数为()A.7E3 B.7F3 C.8E3 D.8F35.等比数列的各项均为正数,且,则()A. B. C. D.6..在各项均为正数的等比数列中,若,则…等于()A.5 B.6 C.7 D.87.若,则下列不等式正确的是()A. B. C. D.8.设等差数列{an}的前n项的和Sn,若a2+a8=6,则S9=()A.3 B.6 C.27 D.549.已知圆,过点作圆的最长弦和最短弦,则直线,的斜率之和为A. B. C.1 D.10.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思是“有一个人走378里,第一天健步行走,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地.”请问第三天走了()A.60里 B.48里 C.36里 D.24里二、填空题:本大题共6小题,每小题5分,共30分。11.若是函数的两个不同的零点,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值等于________.12.若存在实数,使不等式成立,则的取值范围是_______________.13.在中,分别是角的对边,,且的周长为5,面积,则=______14.已知等差数列则.15.已知圆锥如图所示,底面半径为,母线长为,则此圆锥的外接球的表面积为___.16.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆与轴交于两点,且(为圆心),过点且斜率为的直线与圆相交于两点(Ⅰ)求实数的值;(Ⅱ)若,求的取值范围;(Ⅲ)若向量与向量共线(为坐标原点),求的值18.在中,角,,所对的边分别为,,,且.(Ⅰ)求角的大小;(Ⅱ)若的面积为,其外接圆的半径为,求的周长.19.已知,,且(Ⅰ)求的值;(Ⅱ)若,求的值.20.已知函数(1)求函数的反函数;(2)解方程:.21.在中,内角所对的边分别为.已知,.(I)求的值;(II)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由题意知,此球是棱长为6的正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为6,再由球的体积公式求解即可.【详解】解:由已知可得球的直径为6,故半径为3,其体积是,故选:.【点睛】本题考查长方体内切球的几何特征,以及球的体积公式,属于基础题.2、A【解析】

把直线方程化为,得到直线恒过定点,由此可得点P到直线的距离的最大值就是点P到定点的距离,得到答案.【详解】由题意,直线可化为,令,解得,即直线恒过定点,则点P到直线的距离的最大值就是点P到定点的距离为:,故选A.【点睛】本题主要考查了直线方程的应用,其中解答中把直线方程化为,得出直线恒过定点是解答本题的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.3、B【解析】

判断框,即当执行到时终止循环,输出.【详解】初始值,代入循环体得:,,,输出,故选A.【点睛】本题由于循环体执行的次数较少,所以可以通过列举每次执行后的值,直到循环终止,从而得到的输出值.4、A【解析】

通过竖式除法,用2019除以16,取其余数,再用商除以16,取其余数,直至商为零,将余数逆着写出来即可.【详解】用2019除以16,得余数为3,商为126;用126除以16,得余数为14,商为7;用7除以16,得余数为7,商为0;将余数3,14,7逆着写,即可得7E3.故选:A.【点睛】本题考查进制的转化,只需按照流程执行即可.5、D【解析】

本题首先可根据数列是各项均为正数的等比数列以及计算出的值,然后根据对数的相关运算以及等比中项的相关性质即可得出结果.【详解】因为等比数列的各项均为正数,,所以,,所以,故选D.【点睛】本题考查对数的相关运算以及等比中项的相关性质,考查的公式为以及在等比数列中有,考查计算能力,是简单题.6、C【解析】因为数列为等比数列,所以,所以.7、C【解析】

根据不等式性质,结合特殊值即可比较大小.【详解】对于A,当,满足,但不满足,所以A错误;对于B,当时,不满足,所以B错误;对于C,由不等式性质“不等式两边同时加上或减去同一个数或式子,不等式符号不变”,所以由可得,因而C正确;对于D,当时,不满足,所以D错误.综上可知,C为正确选项,故选:C.【点睛】本题考查了不等式大小比较,不等式性质及特殊值的简单应用,属于基础题.8、C【解析】

利用等差数列的性质和求和公式,即可求得的值,得到答案.【详解】由题意,等差数列的前n项的和,由,根据等差数列的性质,可得,所以,故选:C.【点睛】本题主要考查了等差数列的性质,以及等差数列的前n项和公式的应用,着重考查了推理与运算能力,属于基础题.9、D【解析】

根据圆的几何性质可得最长弦是直径,最短弦和直径垂直,故可计算斜率,并求和.【详解】由题意得,直线经过点和圆的圆心弦长最长,则直线的斜率为,由题意可得直线与直线互相垂直时弦长最短,则直线的斜率为,故直线,的斜率之和为.【点睛】本题考查了两直线垂直的斜率关系,以及圆内部的几何性质,属于简单题型.10、B【解析】

根据题意得出等比数列的项数、公比和前项和,由此列方程,解方程求得首项,进而求得的值.【详解】依题意步行路程是等比数列,且,,,故,解得,故里.故选B.【点睛】本小题主要考查中国古典数学文化,考查等比数列前项和的基本量计算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

由一元二次方程根与系数的关系得到a+b=p,ab=q,再由a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a,b的方程组,求得a,b后得答案.【详解】由题意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,则p+q=1.故答案为1.点评:本题考查了一元二次方程根与系数的关系,考查了等差数列和等比数列的性质,是基础题.【思路点睛】解本题首先要能根据韦达定理判断出a,b均为正值,当他们与-2成等差数列时,共有6种可能,当-2为等差中项时,因为,所以不可取,则-2只能作为首项或者末项,这两种数列的公差互为相反数;又a,b与-2可排序成等比数列,由等比中项公式可知-2必为等比中项,两数列搞清楚以后,便可列方程组求解p,q.12、;【解析】

不等式转化为,由于存在,使不等式成立,因此只要求得的最小值即可.【详解】由题意存在,使得不等式成立,当时,,其最小值为,∴.故答案为.【点睛】本题考查不等式能成立问题,解题关键是把问题转化为求函数的最值.不等式能成立与不等式恒成立问题的转化区别:在定义域上,不等式恒成立,则,不等式能成立,则,不等式恒成立,则,不等式能成立,则.转化时要注意是求最大值还是求最小值.13、【解析】

令正弦定理化简已知等式,得到,代入题设,求得的长,利用三角形的面积公式表示出的面积,代入已知等式,再将,即可求解.【详解】在中,因为,由正弦定理,可得,因为的周长为5,即,所以,又因为,即,所以.【点睛】本题主要考查了正弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.14、1【解析】试题分析:根据公式,,将代入,计算得n=1.考点:等差数列的通项公式.15、【解析】

根据圆锥的底面和外接球的截面性质可得外接球的球心在上,再根据勾股定理可得求的半径.【详解】由圆锥的底面和外接球的截面性质可得外接球的球心在上,设球心为,球的半径为,则,圆,因为,所以,所以,,则有.解得,则.【点睛】本题主要考查了几何体的外接球,关键是会找到球心求出半径,通常结合勾股定理求.属于难题.16、【解析】

试题分析:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个正方形,边长是2,四棱锥的一条侧棱和底面垂直,且这条侧棱长是2,这样在所有的棱中,连接与底面垂直的侧棱的顶点与相对的底面的顶点的侧棱是最长的长度是,考点:三视图点评:本题考查由三视图还原几何体,所给的是一个典型的四棱锥,注意观察三视图,看出四棱锥的一条侧棱与底面垂直.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)(Ⅲ)【解析】

(Ⅰ)由圆的方程得到圆心坐标和;根据、为等腰直角三角形可知,从而得到,解方程求得结果;(Ⅱ)设直线方程为;利用点到直线距离公式求得圆心到直线距离;由垂径定理可得到,利用可构造不等式求得结果;(Ⅲ)直线方程与圆方程联立,根据直线与圆有两个交点可根据得到的取值范围;设,,利用韦达定理求得,并利用求得,即可得到;利用向量共线定理可得到关于的方程,解方程求得满足取值范围的结果.【详解】(Ⅰ)由圆得:圆心,由题意知,为等腰直角三角形设的中点为,则也为等腰直角三角形,解得:(Ⅱ)设直线方程为:则圆心到直线的距离:由,,可得:,解得:的取值范围为:(Ⅲ)联立直线与圆的方程:消去变量得:设,,由韦达定理得:且,整理得:解得:或,与向量共线,,解得:或不满足【点睛】本题考查直线与圆位置关系的综合应用,涉及到圆的方程的求解、垂径定理的应用、平面向量共线定理的应用;求解直线与圆位置关系综合应用类问题的常用方法是灵活应用圆心到直线的距离、直线与圆方程联立,韦达定理构造方程等方法,属于常考题型.18、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)由由正弦定理得,进而得到,求得,即可求解;(Ⅱ)由(Ⅰ)和正弦定理,求得,再由余弦定理得,利用三角形的面积公式,求得,进而求得的值,得出三角形的周长.【详解】(Ⅰ)由题意,因为,由正弦定理,得,即,由,得,又由,则,所以,解得,又因为,所以.(Ⅱ)由(Ⅰ)知,且外接圆的半径为,由正弦定理可得,解得,由余弦定理得,可得,因为的面积为,解得,所以,解得:,所以的周长.【点睛】本题主要考查了三角恒等变换的应用,以及正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.19、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)根据题中条件,求出,进而可得,再由两角差的正切公式,即可得出结果;(Ⅱ)根据题中条件,得到,求出,再由,根据两角差的正弦公式,即可求出结果.【详解】(Ⅰ)因为,,所以,因此,所以;(Ⅱ)因为,,所以,又,所以,所以,因此.【点睛】本题主要考查三角恒等变换,给值求值的问题,熟记公式即可,属于常考题型.20、(1);(2)【解析】

(1)反解,然后交换的位置,写出原函数的值域即可得到结果;(2)代入原函数与反函数的解析式,解方程即可得到答案.【详解】(1)由得,得,因为,所以,所以.(2)由得2,所以,即,解得,所以,所以原方程的解集为.【点睛】本题考查了求反函数的解析式,考查了指数式与对数式的互化,属于中档题.21、(Ⅰ)(Ⅱ)【解析】试题分析:利用正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论