版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.袋中有个大小相同的小球,其中个白球,个红球,个黑球,现在从中任意取一个,则取出的球恰好是红色或者黑色小球的概率为()A. B. C. D.2.已知数列满足,,则数列的前10项和为()A. B. C. D.3.如果点位于第四象限,则角是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角4.同时抛掷两枚骰子,朝上的点数之和为奇数的概率是()A. B. C. D.5.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35 B.0.25 C.0.20 D.0.156.圆心为且过原点的圆的方程是()A.B.C.D.7.在平面直角坐标系中,为坐标原点,为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的坐标为()A. B. C. D.8.如图,在正四棱锥中,,侧面积为,则它的体积为()A.4 B.8 C. D.9.设全集,集合,,则()A. B. C. D.10.在中,角均为锐角,且,则的形状是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集为_________.12.在平面直角坐标系xOy中,双曲线的右支与焦点为F的抛物线交于A,B两点若,则该双曲线的渐近线方程为________.13.某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为__________.14.函数y=tan15.某小区拟对如图一直角△ABC区域进行改造,在三角形各边上选一点连成等边三角形,在其内建造文化景观.已知,则面积最小值为____16._______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,已知点D在边BC上,,的面积是面积的倍,且,.(1)求;(2)求边BC的长.18.李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据,如表所示:单价(千元)销量(百件)已知.(1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程;(2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.(参考公式:线性回归方程中的估计值分别为)19.已知是圆的直径,垂直圆所在的平面,是圆上任一点.求证:平面⊥平面.20.已知,,分别为内角,,的对边,且.(1)求角;(2)若,,求边上的高.21.已知函数.(1)求函数的单调递增区间;(2)当时,求函数的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用古典概型的概率公式可计算出所求事件的概率.【详解】从袋中个球中任取一个球,取出的球恰好是一个红色或黑色小球的基本事件数为,因此,取出的球恰好是红色或者黑色小球的概率为,故选D.【点睛】本题考查古典概型概率的计算,解题时要确定出全部基本事件数和所求事件所包含的基本事件数,并利用古典概型的概率公式进行计算,考查计算能力,属于基础题.2、C【解析】
由判断出数列是等比数列,再求出,利用等比数列前项和公式求解即可.【详解】由,得,所以数列是以为公比的等比数列,又,所以,由等比数列前项和公式,.故选:C【点睛】本题主要考查等比数列的定义和等比数列前项和公式的应用,考查学生的计算能力,属于基础题.3、C【解析】
由点位于第四象限列不等式,即可判断的正负,问题得解.【详解】因为点位于第四象限所以,所以所以角是第三象限角故选C【点睛】本题主要考查了点的坐标与点的位置的关系,还考查了等价转化思想及三角函数值的正负与角的终边的关系,属于基础题.4、A【解析】
分别求出基本事件的总数和点数之和为奇数的事件总数,再由古典概型的概率计算公式求解.【详解】同时抛掷两枚骰子,总共有种情况,朝上的点数之和为奇数的情况有种,则所求概率为.故选:A.【点睛】本题考查古典概型概率的求法,属于基础题.5、B【解析】
已知三次投篮共有20种,再得到恰有两次命中的事件的种数,然后利用古典概型的概率公式求解.【详解】三次投篮共有20种,恰有两次命中的事件有:191,271,932,812,393,有5种∴该运动员三次投篮恰有两次命中的概率为故选:B【点睛】本题主要考古典概型的概率求法,还考查了运算求解的能力,属于基础题.6、D【解析】试题分析:设圆的方程为,且圆过原点,即,得,所以圆的方程为.故选D.考点:圆的一般方程.7、C【解析】
由题意利用任意角的三角函数的定义,诱导公式,求得点的坐标.【详解】为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的横坐标为,点的纵坐标为,故点的坐标为.故选C.【点睛】本题主要考查任意角的三角函数的定义,诱导公式,考查基本的运算求解能力.8、A【解析】
连交于,连,根据正四棱锥的定义可得平面,取中点,连,则由侧面积和底面边长,求出侧面等腰三角形的高,在中,求出,即可求解.【详解】连交于,连,取中点,连因为正四棱锥,则平面,,侧面积,在中,,.故选:A.【点睛】本题考查正四棱锥结构特征、体积和表面积,属于基础题.9、D【解析】
先求得集合的补集,然后求其与集合的交集,由此得出正确选项.【详解】依题意,所以,故选D.【点睛】本小题主要考查集合补集、交集的概念和运算,属于基础题.10、C【解析】,又角均为锐角,则,,且中,,的形状是钝角三角形,故选C.【方法点睛】本题主要考查利用诱导公式、正弦函数的单调性以及判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用两个数的商是正数等价于两个数同号;将已知的分式不等式转化为整式不等式,求出解集.【详解】同解于解得或故答案为:【点睛】本题考查解分式不等式,利用等价变形转化为整式不等式是解题的关键.12、【解析】
根据题意到,联立方程得到,得到答案.【详解】,故.,故,故,故.故双曲线渐近线方程为:.故答案为:.【点睛】本题考查了双曲线的渐近线问题,意在考查学生的计算能力和综合应用能力.13、0.72【解析】
根据对立事件的概率公式即可求解.【详解】由题意,在该产品中任抽一件,“抽到优质品”与“抽到合格品或次品”是对立事件,所以在该产品中任抽一件,则抽到优质品的概率为.故答案为【点睛】本题主要考查对立事件的概率公式,熟记对立事件的概念及概率计算公式即可求解,属于基础题型.14、{【解析】
解方程12【详解】由题得12x+故答案为{x|x≠2kπ+【点睛】本题主要考查正切型函数的定义域的求法,意在考查学生对该知识的理解掌握水平,属于基础题.15、【解析】
设,然后分别表示,利用正弦定理建立等式用表示,从而利用三角函数的性质得到的最小值,从而得到面积的最小值.【详解】因为,所以,显然,,设,则,且,则,所以,在中,由正弦定理可得:,求得,其中,则,因为,所以当时,取得最大值1,则的最小值为,所以面积最小值为,【点睛】本题主要考查了利用三角函数求解实际问题的最值,涉及到正弦定理的应用,属于难题.对于这类型题,关键是能够选取恰当的参数表示需求的量,从而建立相关的函数,利用函数的性质求解最值.16、2【解析】
利用裂项求和法将化简为,再求极限即可.【详解】令...故答案为:【点睛】本题主要考查数列求和中的列项求和,同时考查了极限的求法,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用三角形面积公式得出和的表达式,由,化简得出的值;(2)由结合,得出,在中,利用余弦定理得出,再由余弦定理得出,进而得出,由直角三角形的边角关系得出,最后由得出的长.【详解】(1)因为,,且,所以即,所以.(2)由(1)知,所以在中,,,由余弦定理所以.且所以,解得.所以.即边BC的长为.【点睛】本题主要考查了三角形面积公式以及余弦定理的应用,属于中档题.18、(1)(2),,,,,【解析】
(1)先计算,将数据代入公式得到,,线性回归方程为(2)利用(1)中所求的线性回归方程,代入数据分别计算得到答案.【详解】(1)由,可求得,故,,,,代入可得,,所以所求的线性回归方程为.(2)利用(1)中所求的线性回归方程可得,当时,;当时,;当时,;当时,;当时,;当时,.【点睛】本题考查了线性回归方程的计算,求估计值,意在考查学生的计算能力和对于回归方程公式的理解应用.19、证明见解析【解析】
先证直线平面,再证平面⊥平面.【详解】证明:∵是圆的直径,是圆上任一点,,,平面,平面,,又,平面,又平面,平面⊥平面.【点睛】本题考查圆周角及线面垂直判定定理、面面垂直判定定理的应用,考查垂直关系的简单证明.20、(1);(2)【解析】
(1)利用正弦定理化简已知条件,利用三角形内角和定理以及两角和的正弦公式化简,由此求得,进而求得的大小.(2)利用正弦定理求得,进而求得的大小,由此求得的值,根据求得边上的高.【详解】解:(1)∵∴∴∴∴即:,∴(2)由正弦定理:,∴∵∴∴∴设边上的高为,则有【点睛】本小题主要考查利用正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版电力工程设计咨询合同2篇
- 二零二五年度高新技术企业承包商担保合同3篇
- 二零二五版户外用品促销员活动策划合同2篇
- 二零二五年度酒店前台正规雇佣合同范本(含劳动合同变更及续签规则)3篇
- 二零二五版港口安全评价与安全管理合同3篇
- 二零二五版环保工程保险合同3篇
- 二零二五版外资企业往来借款税务筹划合同3篇
- 二零二五年财务顾问企业财务管理咨询合同3篇
- 二零二五版智能家居产品销售安装合同2篇
- 二零二五年度钢筋行业购销合同规范范本5篇
- 铁路运输安全现场管理
- 2023年某保险公司春节经营教材
- 刘都才-南方水稻田杂草发生动态及防控技术
- 全自动化学发光分析仪操作规程
- 北仑区建筑工程质量监督站监督告知书
- 深蓝的故事(全3册)
- GB/T 42461-2023信息安全技术网络安全服务成本度量指南
- 职校开学第一课班会PPT
- 央国企信创白皮书 -基于信创体系的数字化转型
- GB/T 36964-2018软件工程软件开发成本度量规范
- 6第六章 社会契约论.电子教案教学课件
评论
0/150
提交评论