邻近多目标场景下MIMO雷达检测数据处理算法研究_第1页
邻近多目标场景下MIMO雷达检测数据处理算法研究_第2页
邻近多目标场景下MIMO雷达检测数据处理算法研究_第3页
邻近多目标场景下MIMO雷达检测数据处理算法研究_第4页
邻近多目标场景下MIMO雷达检测数据处理算法研究_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

邻近多目标场景下MIMO雷达检测数据处理算法研究邻近多目标场景下MIMO雷达检测数据处理算法研究

摘要:

MIMO雷达是一种多输入多输出雷达系统,可以利用天线阵列快速获取地面目标信息,并提供较高的分辨率和检测性能。然而,在邻近多目标场景下,传统的MIMO雷达数据处理算法通常存在一些问题,如交叉干扰、信号混叠等。针对这些问题,本文提出了一种改进的邻近多目标场景下MIMO雷达数据处理算法。首先,使用半监督学习技术来减少交叉干扰的影响,并利用最小二乘法进行信号分离。其次,采用弱化总变差(TV)约束的方法来优化多目标信号的稀疏表示,并利用非局部均值(NLM)去除信号混叠。最后,利用仿真实验和实测数据进行算法测试,结果表明,该算法能够有效地提高邻近多目标场景下MIMO雷达的检测性能。

关键词:

MIMO雷达、多目标场景、交叉干扰、信号混叠、稀疏表示。

Abstract:

MIMOradarisamultiple-inputmultiple-outputradarsystemthatcanquicklyacquiregroundtargetinformationusingantennaarrayandprovidehighresolutionanddetectionperformance.However,intheadjacentmultiple-targetscenes,traditionalMIMOradardataprocessingalgorithmsusuallyhavesomeproblems,suchascrossinterferenceandsignalaliasing.Inordertosolvetheseproblems,thispaperproposesanimprovedMIMOradardataprocessingalgorithmforadjacentmultiple-targetscenes.Firstly,semi-supervisedlearningisusedtoreducetheimpactofcrossinterference,andtheleastsquaresmethodisusedtoseparatethesignals.Secondly,thetotalvariation(TV)constraintisweakenedtooptimizethesparserepresentationofmultipletargetsignals,andthenon-localmeans(NLM)methodisusedtoremovesignalaliasing.Finally,simulationexperimentsandactualmeasurementsareusedtotestthealgorithm,andtheresultsshowthattheproposedalgorithmcaneffectivelyimprovethedetectionperformanceofMIMOradarinadjacentmultiple-targetscenes.

Keywords:

MIMOradar,multiple-targetscenes,crossinterference,signalaliasing,sparserepresentationMultiple-targetscenesareacommonoccurrenceinmodernMIMOradarsystems.However,thesescenesposesignificantchallengestosignaldetectionduetothepresenceofcross-interferenceandsignalaliasing.Cross-interferenceariseswhentheechoesfromonetargetinterferewiththeechoesfromanother.Signalaliasing,ontheotherhand,iscausedbyoverlappingofthesignalsfromdifferenttargetsinthefrequencydomain,whichresultsinincorrectlocalizationofthetargets.

Toovercomethesechallenges,weproposeanewalgorithmbasedonsparserepresentationandnon-localmeans.Themainideabehindourapproachistoweakentheinterferencebetweenthetargetsignalsbyexploitingthesparsityofthescene.Specifically,weuseasparserepresentationmodeltoseparatethesignalsfromdifferenttargets,whichallowsustoreducethecross-interference.Thesparsitymodelassumesthatthesignalscanberepresentedasalinearcombinationofasmallnumberofbasisfunctionsordictionaryelements,whichiswell-suitedforMIMOradarsystems.

Inadditiontosparsity-basedprocessing,wealsousethenon-localmeans(NLM)methodtoaddresstheissueofsignalaliasing.TheNLMmethodisapopulardenoisingtechniquethatremovesnoisebyaveragingsimilarpatchesinanimage.Inourcase,weapplytheNLMmethodtotheMIMOradarsignalstoremovethealiasingcausedbyoverlappingofthesignalsfromdifferenttargets.

Toevaluatetheeffectivenessofourproposedalgorithm,weconductedsimulationexperimentsandactualmeasurements.TheresultsshowthatouralgorithmcaneffectivelyimprovethedetectionperformanceofMIMOradarinadjacentmultiple-targetscenes.Specifically,ouralgorithmachievesbettertargetlocalizationandhighersignal-to-interference-plus-noise-ratio(SINR)comparedtoexistingmethods.

Inconclusion,ourproposedalgorithmbasedonsparserepresentationandnon-localmeansisapromisingapproachtoaddressthechallengesofsignaldetectioninmultiple-targetscenesforMIMOradarsystems.OurapproachimprovestheperformanceandreliabilityofMIMOradarsystemsandhaspotentialapplicationsinareassuchassurveillance,mapping,andremotesensingOneareawhereourproposedalgorithmcouldbeparticularlyusefulisdisasterresponse.Insituationssuchasearthquakes,hurricanes,orfloods,traditionaldetectionmethodsmaybeinsufficientinidentifyingpotentialsurvivorsorlocatingburiedvictims.However,MIMOradarsystemsusingourproposedalgorithmcouldimprovethespeedandaccuracyofrescuesbyenablingbettertargetlocalizationandidentificationinthesescenarios.

Additionally,ouralgorithmcouldalsohaveapplicationsinautonomousvehiclesandrobotics.Byimprovingtargetdetectionandlocalizationcapabilities,autonomousvehiclescouldnavigatemoreaccurately,avoidingobstaclesandimprovingsafetyontheroad.Inthefieldofrobotics,ouralgorithmcouldenablebetterperceptionandinteractionwiththeenvironment,allowingrobotstoperformtaskssuchasmappingandexplorationmoreeffectively.

Overall,ourproposedalgorithmbasedonsparserepresentationandnon-localmeanshasthepotentialtogreatlyimprovetheperformanceandreliabilityofMIMOradarsystemsindetectingmultipletargetsincomplexenvironments.Itsapplicationsarewide-ranging,fromdisasterresponseandsurveillancetoautonomousvehiclesandrobotics.Furtherresearchanddevelopmentinthisareacouldleadtosignificantadvancementsintargetdetectionandlocalization,benefitingarangeofindustriesandsocietalneedsSparserepresentationandnon-localmeansalgorithmshavebecomeapromisingsolutionforthedetectionandlocalizationofmultipletargetsincomplexenvironmentsusingMIMOradarsystems.Thistechniquehasshownitspotentialtoimprovethereliabilityandaccuracyoftargetdetectioninavarietyofapplicationsspanningacrossdifferentindustries.

Oneofthemajorbenefitsofthesparserepresentation-basedalgorithmisitsabilitytocapitalizeontheinherentsparsityofthesignaltoaccuratelyidentifyweakandcloselyspacedtargets.Thispropertybecomesparticularlyusefulinenvironmentswheretargetsarecloselylocated,andconventionaltechniquesmaystruggletoresolvethem.Thealgorithmachievesthisbyrepresentingthesignalasalinearcombinationoffewatomsfromapre-defineddictionary.Thesparsecoefficientsarethenestimatedusinganoptimizationmethod,suchasBasisPursuitorOrthogonalMatchingPursuit.ThismethodhasbeenshowntoimprovethedetectionandlocalizationperformanceofMIMOradarsystemsinvariousstudies.

Thenon-localmeansalgorithm,ontheotherhand,exploitstheredundancyofinformationinthereceivedsignaltosuppressnoiseandenhancethesignal-to-noiseratio(SNR).Theapproachreliesontheideathattargetsthatarespatiallyclosewillhavesimilarscatteringcharacteristics.Byexploitingthissimilarity,onecanestimatethesignalatagivenlocationbyaveragingthesignalatotherlocationswithinaspecificrange.Thisaveragingprocesshelpstosuppressrandomnoiseandpreservesignalfeatures,resultinginanimprovementintheSNR.

Thecombinationofthesetwoalgorithmshasshowntoyieldexceptionalresultsindetectingmultipletargetswithhighaccuracy,eveninenvironmentswithahighlevelofnoiseandclutter.Moreover,thealgorithmsrequirelesscomputationtimethantraditionalmethods,whichcanbeadvantageousinreal-timeapplications.Thismakesthemsuitableforawiderangeofapplications,includingsurveillance,disasterresponse,autonomousvehicles,androbotics.

Fordisasterresponseandsurveillanceapplications,theuseofradarsystemsindetectingandlocalizingtargetscanprovecritical.Theabilitytoaccuratelydetectandlocatepeopleorobjectsinadisaster-strickenareacanprovidevaluableinformationtotherescueteams,facilitatingthesearchandrescueprocess.Similarly,insurveillanceapplications,theuseofradarsystemscanhelpindetectingandtrackingintrudersinrestrictedareas,enhancingsecurity.Thesparserepresentationandnon-localmeansalgorithmscanimprovetheperformanceoftheradarsystemsusedintheseapplications,leadingtobetterresults.

Intheautonomousvehicleindustry,robusttargetdetectionandtrackingarecrucialforsafenavigation.Theuseofradarsystemsinautonomousvehiclesforobjectdetectionandlocalizationhasrapidlyincreasedinrecentyears.Thecombinationofthesparserepresentationandnon-localmeansalgorithmscanfurtherenhancetheperformanceofthesesystems,improvingtheirreliabilityandaccuracyindetectingandtrackingobjects,thusleadingtosaferautonomousnavigation.

Intheroboticsindustry,theuseofradarsystemscanenablerobotstooperateincomplexenvironmentswithvaryinglightingconditions.Thecombinationofthesparserepresentationandnon-localmeansalgorithmscanimprovetheperformanceoftheradarsystems,makingtherobotsbetterequippedtodetectandlocalizeobjects,leadingtobetterdecision-makingcapabilities.

Inconclusion,thesparserepresentationandnon-localmeansalgorithmshaveshownthepotentialtogreatlyimprov

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论