版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,,则的最小值为()A. B. C. D.2.直线在轴上的截距为,在轴上的截距为,则()A. B. C. D.3.如图,平行四边形的对角线相交于点,是的中点,的延长线与相交于点,若,,,则()A. B. C. D.4.已知函数图象的一条对称轴是,则的值为()A.5 B. C.3 D.5.设是周期为4的奇函数,当时,,则()A. B. C. D.6.若对任意,不等式恒成立,则a的取值范围为()A. B. C. D.7.已知甲,乙,丙三人去参加某公司面试,他们被该公司录取的概率分别是,,,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为()A. B. C. D.8.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A.1盏 B.3盏C.5盏 D.9盏9.在中,已知,,,则的形状为()A.钝角三角形 B.锐角三角形 C.直角三角形 D.不能确定10.已知是常数,如果函数的图像关于点中心对称,那么的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为.12.若6是-2和k的等比中项,则______.13.已知球为正四面体的外接球,,过点作球的截面,则截面面积的取值范围为____________________.14.三棱锥的各顶点都在球的球面上,,平面,,,球的表面积为,则的表面积为_______.15.一艘海轮从出发,沿北偏东方向航行后到达海岛,然后从出发沿北偏东方向航行后到达海岛,如果下次直接从沿北偏东方向到达,则______.16.在直三棱柱中,,,,则异面直线与所成角的余弦值是_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线与圆相交于,两点.(1)若,求;(2)在轴上是否存在点,使得当变化时,总有直线、的斜率之和为0,若存在,求出点的坐标:若不存在,说明理由.18.已知向量,其中.函数的图象过点,点与其相邻的最高点的距离为1.(Ⅰ)求函数的单调递减区间;(Ⅱ)计算的值;(Ⅲ)设函数,试讨论函数在区间[0,3]上的零点个数.19.已知直线的方程为,其中.(1)求证:直线恒过定点;(2)当变化时,求点到直线的距离的最大值;(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时直线的方程.20.高二数学期中测试中,为了了解学生的考试情况,从中抽取了个学生的成绩(满分为100分)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100]的数据).(1)求样本容量和频率分布直方图中的值;(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名参加志愿者活动,所抽取的3名同学中至少有一名成绩在[90,100]内的概率..21.在等差数列中,已知,.(1)求数列的前项和的最大值;(2)若,求数列前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据题意,得出,利用基本不等式,即可求解,得到答案.【详解】由题意,因为,则当且仅当且即时取得最小值.故选B.【点睛】本题主要考查了利用基本不等式求最小值问题,其中解答中合理化简,熟练应用基本不等式求解是解答的关键,着重考查了运算与求解能力,属于基础题.2、B【解析】
令求,利用求.【详解】令,由得:,所以令,由得:,所以,故选B.【点睛】本题考查了直线的截距问题,直线方程,令解出,得到直线的纵截距.令解出,得到直线的横截距.3、B【解析】
先根据勾股定理判断为直角三角形,且,,再根据三角形相似可得,然后由向量的加减的几何意义以及向量的数量积公式计算即可.【详解】,,,,为直角三角形,且,,平行行四边形的对角线相交于点,是的中点,,,,,故选B.【点睛】本题主要考查向量的加减的几何意义以及向量的数量积公式的应用.4、D【解析】
化简函数f(x)=acosx+sinx为一个角的一个三角函数的形式,利用图象关于直线对称,就是时,函数取得最值,求出a即可.【详解】函数f(x)=acosx+sinxsin(x+θ),其中tanθ=a,,其图象关于直线对称,所以θ,θ,所以tanθ=a,故答案为D【点睛】本题考查正弦函数的对称性,考查计算能力,逻辑思维能力,是基础题.5、A【解析】
.故选A.6、D【解析】
对任意,不等式恒成立,即恒成立,代入计算得到答案.【详解】对任意,不等式恒成立即恒成立故答案为D【点睛】本题考查了不等式恒成立问题,意在考查学生的计算能力和解决问题的能力.7、B【解析】
由题意,可先求得三个人都没有被录取的概率,接下来求至少有一人被录取的概率,利用对立事件的概率公式,求得结果.【详解】甲、乙、丙三人都没有被录取的概率为,所以三人中至少有一人被录取的概率为,故选B.【点睛】该题考查的是有关概率的求解问题,关键是掌握对立事件的概率加法公式,求得结果.8、B【解析】
设塔顶的a1盏灯,由题意{an}是公比为2的等比数列,∴S7==181,解得a1=1.故选B.9、A【解析】
由正弦定理得出,从而得出可能为钝角或锐角,分类讨论这两种情况,结合正弦函数的单调性即可判断.【详解】由正弦定理得可能为钝角或锐角当为钝角时,,符合题意,所以为钝角三角形;当为锐角时,由于在区间上单调递增,则,所以,即为钝角三角形综上,为钝角三角形故选:A【点睛】本题主要考查了利用正弦定理判断三角形的形状,属于中档题.10、C【解析】
将点的坐标代入函数的解析式,得出,求出的表达式,可得出的最小值.【详解】由于函数的图象关于点中心对称,则,,则,因此,当时,取得最小值,故选C.【点睛】本题考查余弦函数的对称性,考查初相绝对值的最小值,解题时要结合题中条件求出初相的表达式,结合表达式进行计算,考查分析问题和解决问题的能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
分较长的两条棱所在直线相交,和较长的两条棱所在直线异面两种情况讨论,结合三棱锥的结构特征,即可求出结果.【详解】当较长的两条棱所在直线相交时,如图所示:不妨设,,,所以较长的两条棱所在直线所成角为,由勾股定理可得:,所以,所以此时较长的两条棱所在直线所成角的余弦值为;当较长的两条棱所在直线异面时,不妨设,,则,取CD的中点为O,连接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能构成三角形。所以此情况不存在。故答案为:.【点睛】本题主要考查异面直线所成的角,熟记异面直线所成角的概念,以及三棱锥的结构特征即可,属于常考题型.12、-18【解析】
根据等比中项的性质,列出等式可求得结果.【详解】由等比中项的性质可得,,得.故答案为:-18【点睛】本题主要考查等比中项的性质,属于基础题.13、【解析】
在平面中,过圆内一点的弦长何时最长,何时最短,类比在空间中,过球内一点的球的大圆面积最大,与此大圆垂直的截面小圆面积最小.利用正四面体的性质及球的性质求正四面体外接球的半径、小圆半径,确定答案.【详解】因为正四面体棱长为AB=3,所以正四面体外接球半径R=.由球的性质,当过E及球心O时的截面为球的大圆,面积最大,最大面积为;当过E的截面与EO垂直时面积最小,取△BCD的中心,因为为正四面体,所以平面BCD,O在上,,所以,在三角形中,由,,,,由余弦定理在直角三角形中所以过E且与EO垂直的截面圆的半径r为,截面面积为.所以所求截面面积的范围是.【点睛】本题考查空间想象能力,逻辑推理能力,空间组合体的关系,正四面体、球的性质,考查计算能力,属于难题.14、【解析】
根据题意可证得,而,所以球心为的中点.由球的表面积为,即可求出,继而得出的值,求出三棱锥的表面积.【详解】如图所示:∵,平面,∴,又,故球心为的中点.∵球的表面积为,∴,即有.∴,.∴,,,.故的表面积为.故答案为:.【点睛】本题主要考查三棱锥的表面积的求法,球的表面积公式的应用,意在考查学生的直观想象能力和数学运算能力,属于基础题.15、【解析】
首先根据余弦定理求出,在根据正弦定理求出,即可求出【详解】有题知.所以.在中,,即,解得.所以,故答案为:【点睛】本题主要考查正弦定理和余弦定理的实际应用,熟练掌握公式为解题的关键,属于中档题.16、【解析】
先找出线面角,运用余弦定理进行求解【详解】连接交于点,取中点,连接,则,连接为异面直线与所成角在中,,,同理可得,,异面直线与所成角的余弦值是故答案为【点睛】本题主要考查了异面直线所成的角,考查了空间想象能力,运算能力和推理论证能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)存在.【解析】
(1)由题得到的距离为,即得,解方程即得解;(2)设,,存在点满足题意,即,把韦达定理代入方程化简即得解.【详解】(1)因为圆,所以圆心坐标为,半径为2,因为,所以到的距离为,由点到直线的距离公式可得:,解得.(2)设,,则得,因为,所以,,设存在点满足题意,即,所以,因为,所以,所以,解得.所以存在点符合题意.【点睛】本题主要考查直线和圆的位置关系,考查直线和圆的探究性问题的解答,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.18、(Ⅰ),;(Ⅱ)2028;(Ⅲ)详见解析.【解析】
(Ⅰ)由数量积的坐标运算可得f(x),由题意求得ω,再由函数f(x)的图象过点B(2,2)列式求得.则函数解析式可求,由复合函数的单调性求得f(x)的单调递增区间;(Ⅱ)由(Ⅰ)知,f(x)=2+sin,可得f(x)是周期为2的周期函数,且f(2)=2,f(2)=2,f(3)=0,f(2)=2.得到f(2)+f(2)+f(3)+f(2)=2.进一步可得结论;(Ⅲ)g(x)=f(x)﹣m﹣2,函数g(x)在[0,3]上的零点个数,即为函数y=sin的图象与直线y=m在[0,3]上的交点个数.数形结合得答案.【详解】(Ⅰ)∵(,cos2(ωx+φ)),(,),∴f(x)cos2(ωx+)=2﹣cos2(ωx+)),∴f(x)max=2,则点B(2,2)为函数f(x)的图象的一个最高点.∵点B与其相邻的最高点的距离为2,∴,得ω.∵函数f(x)的图象过点B(2,2),∴,即sin2φ=2.∵0<,∴.∴f(x)=2﹣cos2()=2+sin,由,得,.的单调递减区间是,.(Ⅱ)由(Ⅰ)知,f(x)=2+sin,∴f(x)是周期为2的周期函数,且f(2)=2,f(2)=2,f(3)=0,f(2)=2.∴f(2)+f(2)+f(3)+f(2)=2.而2027=2×502+2,∴f(2)+f(2)+…+f(2027)=2×502+2=2028;(Ⅲ)g(x)=f(x)﹣m﹣2,函数g(x)在[0,3]上的零点个数,即为函数y=sin的图象与直线y=m在[0,3]上的交点个数.在同一直角坐标系内作出两个函数的图象如图:①当m>2或m<﹣2时,两函数的图象在[0,3]内无公共点;②当﹣2≤m<0或m=2时,两函数的图象在[0,3]内有一个共点;③当0≤m<2时,两函数的图象在[0,3]内有两个共点.综上,当m>2或m<﹣2时,函数g(x)在[0,3]上无零点;②当﹣2≤m<0或m=2时,函数g(x)在[0,3]内有2个零点;③当0≤m<2时,函数g(x)在[0,3]内有2个零点.【点睛】本题考查三角函数中的恒等变换应用,考查数量积的坐标运算,体现了数形结合的解题思想方法,是中档题.19、(1)见解析;(2)5;(3)见解析【解析】试题分析:(1)分离系数m,求解方程组可得直线恒过定点;(2)结合(1)的结论可得点到直线的距离的最大值是5;(3)由题意得到面积函数:,注意等号成立的条件.试题解析:(1)证明:直线方程可化为该方程对任意实数恒成立,所以解得,所以直线恒过定点(2)点与定点间的距离,就是所求点到直线的距离的最大值,即(3)由于直线过定点,分别与轴,轴的负半轴交于两点,设其方程为,则所以当且仅当时取等号,面积的最小值为4此时直线的方程为20、(1)40,0.025,0.005(2)【解析】试题分析:(Ⅰ)由样本容量和频数频率的关系易得答案;(Ⅱ)由题意可知,分数在[80,100)内的学生有6人,分数在[90,100]内的学生有2人,结合古典概型概率公式和对立事件概率公式可求得至少有一名成绩在[90,100]内的概率试题解析:(1)由题意可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《尊重他人是我的需要》课件
- 2024届江苏省兴化市高三上学期期末考试历史试题(解析版)
- 单位管理制度集粹汇编职工管理篇十篇
- 单位管理制度汇编大合集员工管理篇十篇
- 单位管理制度分享汇编【人员管理篇】
- 单位管理制度呈现合集【人员管理篇】
- 2017-2021年安徽专升本考试英语真题卷
- 《雨点儿》教案(15篇)
- 《行政职业能力测验》陕西省咸阳市礼泉县2023年公务员考试深度预测试卷含解析
- 《电工复习题》课件
- DB11-T 693-2024 施工现场临建房屋应用技术标准
- GB/T 45089-20240~3岁婴幼儿居家照护服务规范
- 统编版2024-2025学年三年级上册语文期末情景试卷(含答案)
- 中国近代史纲要中国计量大学现代科技学院练习题复习资料
- 2024年01月11344金融风险管理期末试题答案
- 浙江省杭州市八县区2024-2025学年高二数学上学期期末学业水平测试试题
- 绍兴文理学院元培学院《操作系统》2022-2023学年第一学期期末试卷
- 湖南省长沙市明德教育集团初中联盟2020-2021学年八年级上学期期末考试地理试题
- 期末复习综合卷(试题)-2024-2025学年一年级上册数学人教版
- 施工员岗位述职报告
- 第47届江苏省选拔赛化学实验室技术项目技术文件
评论
0/150
提交评论