2022-2023学年新疆昌吉市一中高一数学第二学期期末达标测试试题含解析_第1页
2022-2023学年新疆昌吉市一中高一数学第二学期期末达标测试试题含解析_第2页
2022-2023学年新疆昌吉市一中高一数学第二学期期末达标测试试题含解析_第3页
2022-2023学年新疆昌吉市一中高一数学第二学期期末达标测试试题含解析_第4页
2022-2023学年新疆昌吉市一中高一数学第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知则()A. B. C. D.2.若数列{an}是等比数列,且an>0,则数列也是等比数列.若数列是等差数列,可类比得到关于等差数列的一个性质为().A.是等差数列B.是等差数列C.是等差数列D.是等差数列3.已知都是正数,且,则的最小值等于A. B.C. D.4.已知数列是公比不为1的等比数列,为其前n项和,满足,且成等差数列,则()A. B.6 C.7 D.95.已知三角形为等边三角形,,设点满足,若,则()A. B. C. D.6.以两点A(-3,-1)和B(5,5)为直径端点的圆的标准方程是()A.(x-1)2+(y-2)2=10 B.(x-1)2+(y-2)2=100C.(x-1)2+(y-2)2=5 D.(x-1)2+(y-2)2=257.设l是直线,,是两个不同的平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则8.已知曲线C的方程为x2+y2=2(x+|y|),直线x=my+4与曲线C有两个交点,则m的取值范围是()A.m>1或m<﹣1 B.m>7或m<﹣7C.m>7或m<﹣1 D.m>1或m<﹣79.在数列中,若,,,设数列满足,则的前项和为()A. B. C. D.10.在中,角的对边分别为,已知,则的大小是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在△ABC中,点M,N满足,若,则x=________,y=________.12.已知为等差数列,,前n项和取得最大值时n的值为___________.13.已知实数满足约束条件,若目标函数仅在点处取得最小值,则的取值范围是__________.14.已知向量,,则在方向上的投影为______.15.把二进制数1111(2)化为十进制数是______.16.在中,,,,点在线段上,若,则的面积是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)从2,3,8,9中任取两个不同的数字,分别记为,求为整数的概率?(2)两人相约在7点到8点在某地会面,先到者等候另一个人20分钟方可离去.试求这两人能会面的概率?18.(1)解方程:;(2)有四个数,其中前三个数成等差数列,后三个数成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数;19.已知不经过原点的直线在两坐标轴上的截距相等,且点在直线上.(1)求直线的方程;(2)过点作直线,若直线,与轴围成的三角形的面积为2,求直线的方程.20.如图是一景区的截面图,是可以行走的斜坡,已知百米,是没有人行路(不能攀登)的斜坡,是斜坡上的一段陡峭的山崖.假设你(看做一点)在斜坡上,身上只携带着量角器(可以测量以你为顶点的角).(1)请你设计一个通过测量角可以计算出斜坡的长的方案,用字母表示所测量的角,计算出的长,并化简;(2)设百米,百米,,,求山崖的长.(精确到米)21.如图,已知中,.设,,它的内接正方形的一边在斜边上,、分别在、上.假设的面积为,正方形的面积为.(Ⅰ)用表示的面积和正方形的面积;(Ⅱ)设,试求的最大值,并判断此时的形状.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据条件式,判断出,,且.由不等式性质、基本不等式性质或特殊值即可判断选项.【详解】因为所以可得,,且对于A,由对数函数的图像与性质可知,,所以A错误;对于B,由基本不等式可知,即由于,则,所以B正确;对于C,由条件可得,所以C错误;对于D,当时满足条件,但,所以D错误.综上可知,B为正确选项故选:B【点睛】本题考查了不等式性质的综合应用,根据基本不等式求最值,属于基础题.2、B【解析】试题分析:本题是由等比数列与等差数列的相似性质,推出有关结论:由“等比”类比到“等差”,由“几何平均数”类比到“算数平均数”;所以,所得结论为是等差数列.考点:类比推理.3、C【解析】

,故选C.4、C【解析】

设等比数列的公比为,且不为1,由等差数列中项性质和等比数列的通项公式,解方程可得首项和公比,再由等比数列的求和公式,可得答案.【详解】数列是公比不为l的等比数列,满足,即且成等差数列,得,即,解得,则.故选:C.【点睛】本题考查等差数列中项性质和等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.5、D【解析】

用三角形的三边表示出,再根据已知的边的关系可得到关于的方程,解方程即得。【详解】由题得,,,整理得,化简得,解得.故选:D【点睛】本题考查平面向量的线性运算及平面向量基本定理,是常考题型。6、D【解析】分析:由条件求出圆心坐标和半径的值,从而得出结论.详解:圆心坐标为(1,2),半径r==5,故所求圆的标准方程为(x-1)2+(y-2)2=25.故选D.点睛:本题主要考查求圆的标准方程的方法,求出圆心坐标和半径的值,是解题的关键,属于基础题.7、D【解析】

利用空间线线、线面、面面的位置关系对选项进行逐一判断,即可得到答案.【详解】A.若,,则与可能平行,也可能相交,所以不正确.B.若,,则与可能的位置关系有相交、平行或,所以不正确.C.若,,则可能,所以不正确.D.若,,由线面平行的性质过的平面与相交于,则,又.

所以,所以有,所以正确.故选:D【点睛】本题考查面面平行、垂直的判断,线面平行和垂直的判断,属于基础题.8、A【解析】

先画出曲线的图象,再求出直线与相切时的,最后结合图象可得的取值范围,得到答案.【详解】如图所示,曲线的图象是两个圆的一部分,由图可知:当直线与曲线相切时,只有一个交点,此时,结合图象可得或.故选:A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中熟练应有直线与圆的位置关系,合理结合图象求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.9、D【解析】

利用等差中项法得知数列为等差数列,根据已知条件可求出等差数列的首项与公差,由此可得出数列的通项公式,利用对数与指数的互化可得出数列的通项公式,并得知数列为等比数列,利用等比数列前项和公式可求出.【详解】由可得,可知是首项为,公差为的等差数列,所以,即.由,可得,所以,数列是以为首项,以为公比的等比数列,因此,数列的前项和为,故选D.【点睛】本题考查利用等差中项法判断等差数列,同时也考查了对数与指数的互化以及等比数列的求和公式,解题的关键在于结合已知条件确定数列的类型,并求出数列的通项公式,考查运算求解能力,属于中等题.10、C【解析】∵,∴,又,∴,又为三角形的内角,所以,故。选C。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】特殊化,不妨设,利用坐标法,以A为原点,AB为轴,为轴,建立直角坐标系,,,则,.考点:本题考点为平面向量有关知识与计算,利用向量相等解题.12、20【解析】

先由条件求出,算出,然后利用二次函数的知识求出即可【详解】设的公差为,由题意得即,①即,②由①②联立得所以故当时,取得最大值400故答案为:20【点睛】等差数列的是关于的二次函数,但要注意只能取正整数.13、【解析】

利用数形结合,讨论的范围,比较斜率大小,可得结果.【详解】如图,当时,,则在点处取最小值,符合当时,令,要在点处取最小值,则当时,要在点处取最小值,则综上所述:故答案为:【点睛】本题考查目标函数中含参数的线性规划问题,难点在于寻找斜率之间的关系,属中档题.14、【解析】

由平面向量投影的定义可得出在方向上的投影为,从而可计算出结果.【详解】设平面向量与的夹角为,则在方向上的投影为.故答案为:.【点睛】本题考查平面向量投影的计算,熟悉平面向量投影的定义是解题的关键,考查计算能力,属于基础题.15、.【解析】

由二进制数的定义可将化为十进制数.【详解】由二进制数的定义可得,故答案为:.【点睛】本题考查二进制数化十进制数,考查二进制数的定义,考查计算能力,属于基础题.16、【解析】

过作于,设,运用勾股定理和三角形的面积公式,计算可得所求值.【详解】过作于,设,,,,又,可得,即有,可得的面积为.故答案为.【点睛】本题考查解三角形,考查勾股定理的运用,以及三角形的面积公式,考查化简运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)分别求出基本事件总数及为整数的事件数,再由古典概型概率公式求解;(2)建立坐标系,找出会面的区域,用会面的区域面积比总区域面积得答案.【详解】(1)所有的基本事件共有4×3=12个,记事件A={为整数},因为,则事件A包含的基本事件共有2个,∴p(A)=;(2)以x、y分别表示两人到达时刻,则.两人能会面的充要条件是.建立直角坐标系如下图:∴P=.∴这两人能会面的概率为.【点睛】本题考查古典概型与几何概型概率的求法,考查数学转化思想方法,是基础题.18、(1)或。(2)、、、,或、、、【解析】

(1)由正弦的倍角公式,化简得,得到解得或,结合正弦和余弦的性质,即可求解;(2)设这四个数分别为,得到,且,即可求解,得到答案.【详解】(1)由题意,方程,可得,即,解得或,所以或.(2)由题意,设这四个数分别为,可得,且,解得:或,所以这四个数为:、、、,或、、、.【点睛】本题主要考查了三角方程的求解,以及等差、等比中项的应用,其中解答中熟记三角恒等变换的公式,以及等差、等比数列中项公式,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.19、(1);(2)或.【解析】

(1)根据直线在两坐标轴上的截距相等列出直线方程,然后代入点即可求出直线方程;(2)首先根据直线过点设出直线方程,然后列出三角形的面积公式,根据面积等于2求出直线的方程.【详解】(1)因为直线在两坐标轴上的截距相等,设直线:,将点代入方程,得,所以直线的方程为;(2)①若直线的斜率不存在,则直线的方程为,直线,直线和轴围成的三角形的面积为2,则直线的方程为符合题意,②若直线的斜率,则直线与轴没有交点,不符合题意,③若直线的斜率,设其方程为,令,得,由(1)得直线交轴,依题意有,即,解得,所以直线的方程为,即,综上,直线的方程为或.【点睛】本题考查了直线方程的求解与直线方程的综合应用,属于中档题.20、(1)米,详见解析(2)205米【解析】

(1)由题意测得,,在中利用正弦定理求得的值;(2)解法一,中由余弦定理求得,中求得和的值,在中利用余弦定理求得的值.解法二,中求得,中利用余弦定理求得,利用三角恒等变换求得,在中利用余弦定理求得的值.【详解】解:(1)据题意,可测得,,在中,由正弦定理,有,即.解得(米).(2)解一:在中,百米,百米,百米,由余弦定理,可得,解得,∴.又由已知,在中,,可解得,从而的.∵,在中,由余弦定理得米所以,的长度约为205米.解二:(2)在中,求得.在中,由余弦定理,得,进而得,再由可求得,.在中,由余弦定理,得.所以,的长度约为205米.【点睛】本题考查了三角恒等变换与解三角形的应用问题,也考查了三角函数模型应用问题,是中档题.21、(Ⅰ),;,(Ⅱ)最大值为;为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论