初中数学-数学专题复习教学设计学情分析教材分析课后反思_第1页
初中数学-数学专题复习教学设计学情分析教材分析课后反思_第2页
初中数学-数学专题复习教学设计学情分析教材分析课后反思_第3页
初中数学-数学专题复习教学设计学情分析教材分析课后反思_第4页
初中数学-数学专题复习教学设计学情分析教材分析课后反思_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学设计本节内容通过设计了一个趣味题(求环形的宽度)引入,让学生认识数形结合思想在解决问题中的作用,然后解释什么是数形结合思想,它的意义;通过二次函数性质感悟数形结合思想的重要性;接着设计了一组简单练习,认识数形结合思想运用广泛;接着通过典型例题分析,认识解决数形结合问题的方法,结合已知观察图形、收集信息,总结推理、解决问题,最后通过练习加以巩固。课后设计了一个作业,结合平时所做这类题目,归纳解决二次函数性质类问题的方法思路。学情分析本专题在学生一轮复习后讲解使用,学生已具备了较全面的数学知识,对数学的认识也较深刻、较全面,但缺少系统化、结构化,理论和方法缺少系统。所以通过本轮的复习,形成系统,归纳出方法,培养系统的解题技能和技巧。效果分析通过本节的教学,学生认识了什么是数形结合思想,通过实例感悟了数形结合思想的重要性,学会了运用数形结合思想理解数学、解决数学问题的方法,对数形结合思想有了一个整体认知,教学中穿插了整体思、转化思想的教学,培养了学生识图能力,整理信息、综合运用的能力,效果较好。教材分析本节是数学专题复习之一,在对初中数学已全面认识学习的基础上,通过结合部分数学题目举例,感悟数形结合思想的重要性,认识理解数形结合思想在解决数学问题中的作用,学会运用数形结合后思想解决问题,培养学生观察图形、搜集、筛选信息的能力,学会综合运用数学知识、手段解决问题。九年级数学专题复习-----数形结合思想基础训练一(数可以用形来刻画)1数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是EQ\r(,2)”,这种说明问题的方式体现的数学思想方法叫做()A.代人法B.换元法C.数形结合D.分类讨论第1题b第1题bb图1图2aa2.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A.B.C.D.3.3、(2014·衡阳)不等式组的解集在数轴上表示为()A.B.C.D.基础训练二(形可以用数来解)4.(2014•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为( A.4B.3C.4.5D.55.(2014•济宁)如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.体会感悟:典例精析解:(1)(2)(3)走近中考(数与形密不可分)1.(2014•四川广安)如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.2.(2014•宁夏)已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.3.(2014•黑龙江绥化)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A.b2>4acB.ac>0C.a﹣b+c>0D.4a+2b+c<03题图4题图4.(2014·湖北荆门)如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是() A.B. C. D.5.(2014·贵州)如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.课后作业:对比走近中考2题和前面做过的题目,总结图像与函数性质类题的做法.拓展归类:(图像与函数性质)1.(2014•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.4课标分析数形结合思想是数学中的重要思想,贯穿于数学学习整个过程,它既是一种思想,也是一种解决问题的方法,它使得数学直观化和具体化。在初中数学中主要体现在函数和图形计算问题中,数轴问题、不等式问题中也有所涉猎;题目类型广泛,主要培养学生的观察力,综合推断能力。课后反思通过本节的教学,认识在数学思想专题的教学中要结合实例让学生感悟数学思想、认识数学思想、学会运用数学思想解决问题。例题、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论