![2022-2023学年宁夏中卫市一中高一数学第二学期期末学业水平测试试题含解析_第1页](http://file4.renrendoc.com/view/c7e61bfce915e3e9a8eccf0cfbd9e74b/c7e61bfce915e3e9a8eccf0cfbd9e74b1.gif)
![2022-2023学年宁夏中卫市一中高一数学第二学期期末学业水平测试试题含解析_第2页](http://file4.renrendoc.com/view/c7e61bfce915e3e9a8eccf0cfbd9e74b/c7e61bfce915e3e9a8eccf0cfbd9e74b2.gif)
![2022-2023学年宁夏中卫市一中高一数学第二学期期末学业水平测试试题含解析_第3页](http://file4.renrendoc.com/view/c7e61bfce915e3e9a8eccf0cfbd9e74b/c7e61bfce915e3e9a8eccf0cfbd9e74b3.gif)
![2022-2023学年宁夏中卫市一中高一数学第二学期期末学业水平测试试题含解析_第4页](http://file4.renrendoc.com/view/c7e61bfce915e3e9a8eccf0cfbd9e74b/c7e61bfce915e3e9a8eccf0cfbd9e74b4.gif)
![2022-2023学年宁夏中卫市一中高一数学第二学期期末学业水平测试试题含解析_第5页](http://file4.renrendoc.com/view/c7e61bfce915e3e9a8eccf0cfbd9e74b/c7e61bfce915e3e9a8eccf0cfbd9e74b5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440 B.330C.220 D.1102.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是()A.12 B.34 C.13.已知双曲线的焦点与椭圆的焦点相同,则双曲线的离心率为()A. B. C. D.24.下列四个函数中,既是上的增函数,又是以为周期的偶函数的是()A. B. C. D.5.已知,∥则()A.6 B. C.-6 D.6.的值等于()A. B. C. D.7.设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.8.已知数列,其前n项和为,且,则的值是()A.4 B.8 C.2 D.99.记Sn为等差数列{an}的前A.an=2n-5 B.an=3n-1010.如下图,在四棱锥中,平面ABCD,,,,则异面直线PA与BC所成角的余弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点在直线上,则的最小值为__________.12._____13.函数,的反函数为__________.14.甲船在岛的正南处,,甲船以每小时的速度向正北方向航行,同时乙船自出发以每小时的速度向北偏东的方向驶去,甲、乙两船相距最近的距离是_____.15.已知等差数列的前项和为,若,则_____16.已知点是所在平面内的一点,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量=,=,=,为坐标原点.(1)若△为直角三角形,且∠为直角,求实数的值;(2)若点、、能构成三角形,求实数应满足的条件.18.已知数列的前项和,函数对任意的都有,数列满足.(1)求数列,的通项公式;(2)若数列满足,是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在请求出的取值范围;若不存在请说明理由.19.已知函数的图象关于直线对称,且图象上相邻两个最高点的距离为.(1)求和的值;(2)当时,求函数的最大值和最小值;(3)设,若的任意一条对称轴与x轴的交点的横坐标不属于区间,求c的取值范围.20.已知是等差数列,设数列的前n项和为,且,,又,.(1)求和的通项公式;(2)令,求的前n项和.21.若不等式的解集是.(1)求的值;(2)当为何值时,的解集为.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题意得,数列如下:则该数列的前项和为,要使,有,此时,所以是第组等比数列的部分和,设,所以,则,此时,所以对应满足条件的最小整数,故选A.点睛:本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.2、D【解析】
求出阴影部分的面积,然后与圆面积作比值即得.【详解】圆被8等分,其中阴影部分有3分,因此所求概率为P=3故选D.【点睛】本题考查几何概型,属于基础题.3、B【解析】根据椭圆可以知焦点为,离心率,故选B.4、C【解析】
本题首先可确定四个选项中的函数的周期性以及在区间上的单调性、奇偶性,然后根据题意即可得出结果.【详解】A项:函数周期为,在上是增函数,奇函数;B项:函数周期为,在上是减函数,偶函数;C项:函数周期为,在上是增函数,偶函数;D项:函数周期为,在上是减函数,偶函数;综上所述,故选C.【点睛】本题考查三角函数的周期性以及单调性,能否熟练的掌握正弦函数以及余弦函数的图像性质是解决本题的关键,考查推理能力,是简单题.5、A【解析】
根据向量平行(共线),它们的坐标满足的关系式,求出的值.【详解】,且,,解得,故选A.【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.6、C【解析】
根据特殊角的三角函数值,得到答案.【详解】.故选C项.【点睛】本题考查特殊角的三角函数值,属于简单题.7、A【解析】
∵∴−=3(−);∴=−.故选A.8、A【解析】
根据求解.【详解】由题得.故选:A【点睛】本题主要考查数列和的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.9、A【解析】
等差数列通项公式与前n项和公式.本题还可用排除,对B,a5=5,S4=4(-7+2)【详解】由题知,S4=4a1+【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.10、B【解析】
作出异面直线PA与BC所成角,结合三角形的知识可求.【详解】取的中点,连接,如图,因为,,所以四边形是平行四边形,所以;所以或其补角是异面直线PA与BC所成角;设,则,;因为,所以;因为平面ABCD,所以,在三角形中,.故选:B.【点睛】本题主要考查异面直线所成角的求解,作出异面直线所成角,结合三角形知识可求.侧重考查直观想象的核心素养.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】
由题得表示点到点的距离,再利用点到直线的距离求解.【详解】由题得表示点到点的距离.又∵点在直线上,∴的最小值等于点到直线的距离,且.【点睛】本题主要考查点到两点间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.12、【解析】
将写成,切化弦后,利用两角和差余弦公式可将原式化为,利用二倍角公式可变为,由可化简求得结果.【详解】本题正确结果:【点睛】本题考查利用三角恒等变换公式进行化简求值的问题,涉及到两角和差余弦公式、二倍角公式的应用.13、【解析】
将函数变形为的形式,然后得到反函数,注意定义域.【详解】因为,所以,则反函数为:且.【点睛】本题考查反三角函数的知识,难度较易.给定定义域的时候,要注意函数定义域.14、【解析】
根据条件画出示意图,在三角形中利用余弦定理求解相距的距离,利用二次函数对称轴及可求解出最值.【详解】假设经过小时两船相距最近,甲、乙分别行至,,如图所示,可知,,,.当小时时甲、乙两船相距最近,最近距离为.【点睛】本题考查解三角形的实际应用,难度较易.关键是通过题意将示意图画出来,然后将待求量用未知数表示,最后利用函数思想求最值.15、1.【解析】
利用等差数列前项和公式能求出的值.【详解】解:∵等差数列的前项和为,若,
.
故答案为:.【点睛】本题考查等差数列前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.16、【解析】
设为的中点,为的中点,为的中点,由得到,再进一步分析即得解.【详解】如图,设为的中点,为的中点,为的中点,因为,所以可得,整理得.又,所以,所以,又,所以.故答案为【点睛】本题主要考查向量的运算法则和共线向量,意在考查学生对这些知识的理解掌握水平,解答本题的关键是作辅助线,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用向量的运算法则求出,,再利用向量垂直的充要条件列出方程求出m;(2)由题意得A,B,C三点不共线,则与不共线,列出关于m的不等式即可.【详解】(1)因为=,=,=,所以,,若△ABC为直角三角形,且∠A为直角,则,∴3(2﹣m)+(1﹣m)=0,解得.(2)若点A,B,C能构成三角形,则这三点不共线,即与不共线,得3(1﹣m)≠2﹣m,∴实数时,满足条件.【点睛】本题考查向量垂直、向量共线的充要条件、利用向量共线解决三点共线、三点不共线等问题,属于基础题.18、(1),;(2).【解析】分析:(1)利用的关系,求解;倒序相加求。(2)先用错位相减求,分离参数,使得对于一切的恒成立,转化为求的最值。详解:(1)时满足上式,故∵=1∴∵①∴②∴①+②,得.(2)∵,∴∴①,②①-②得即要使得不等式恒成立,恒成立对于一切的恒成立,即,令,则当且仅当时等号成立,故所以为所求.点睛:1、,一定要注意,当时要验证是否满足数列。2、等比乘等差结构的数列用错位相减。3、数列中的恒成立问题与函数中的恒成立问题解法一致。19、(1),(2);.(3)【解析】
(1)由相邻最高点距离得周期,从而可得,由对称性可求得;(2)结合正弦函数性质可得最值.(3),先由半个周期大于得出的一个范围,在此范围内再寻找,求出对称轴,由对称轴且得的范围.【详解】(1)因为的图象上相邻两个最高点的距离为,所以的最小正周期,而,又因为的图象关于直线对称,所以,即,又,所以.综上,,.(2)由(1)知,当时,,所以,当即时,;当,即时,.(3),的任意一条对称轴与x轴的交点的横坐标都不属于区间,,即,令,得,且,得,当时,,当时,,当时,,故所求范围.【点睛】本题考查由三角函数性质求函数解析式,考查正弦函数的最值,考查函数的对称性.掌握正弦函数性质是解题关键.20、(1),(2)【解析】
(1)运用数列的递推式,以及等比数列的通项公式可得,是等差数列,运用等差数列的通项公式可得首项和公差,可得所求通项公式;(2)求得,由数列的错位相减法求和,结合等比数列的求和公式,即可得到所求和.【详解】(1)当时,;当时,,且相减可得:故:是公差为d的等差数列,,即为:.(2),前n项和:两式相减可得:化简可得:【点睛】本题考查了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北师范大学《汽车运用技术》2023-2024学年第二学期期末试卷
- 私人民宅出租协议书范本
- 常州信息职业技术学院《互换性与测量技术》2023-2024学年第二学期期末试卷
- 大班上学期听评课记录
- 乌兰察布医学高等专科学校《工程伦理与工程管理》2023-2024学年第二学期期末试卷
- 商丘职业技术学院《数字逻辑电路》2023-2024学年第二学期期末试卷
- 《有的人》听评课记录
- 苏科版数学八年级上册听评课记录《3-3勾股定理的简单应用(1)》
- 广东科技学院《微机原理(含汇编)》2023-2024学年第二学期期末试卷
- 大连工业大学《现代生物医药进展》2023-2024学年第二学期期末试卷
- 2022年第六届【普译奖】全国大学生英语翻译大赛
- GB/T 14258-2003信息技术自动识别与数据采集技术条码符号印制质量的检验
- 政府资金项目(荣誉)申报奖励办法
- 最新如何进行隔代教育专业知识讲座课件
- 当前警察职务犯罪的特征、原因及防范,司法制度论文
- 奥特莱斯专题报告(经典)-课件
- 《新制度经济学》配套教学课件
- 计算机文化基础单元设计-windows
- DNA 亲子鉴定手册 模板
- 深刻认识民航安全工作的五个属性
- DB33T 1233-2021 基坑工程地下连续墙技术规程
评论
0/150
提交评论