




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《概率论与数理统计》综合复习资料一、填空题1、一批产品共有10个正品2个次品,从中任取两次,每次取一个(有放回)。则第一次取到次品,第二次取到正品的概率为;恰有一次取到次品的概率为;两次都取到次品的概率为。2、由长期统计资料得知,某一地区在4月份下雨(记作事件)的概率为4/15,刮风(记作事件B)的概率为7/15,刮风又下雨(记作事件C)的概率为1/10。则:P(A|B);P(AB)。3、一批产品共有8个正品2个次品,从中任取两次,每次取一个(不放回)。则:(1)第一次取到正品,第二次取到次品的概率为(2)恰有一次取到次品的概率为;。4、设、为事件,P(A)0.6,P(AB)0.3,则。5、一批产品共有10个正品2个次品,从中任取两次,每次取一个(不放回)。则:(1)两次都取到正品的概率为_______;(2)至少取到一个正品的概率为6、一个袋子中有5只黑球3只白球,从袋中任取两只球,若以表示:。“取到的两只球均为白球”;P(A)表示:“取到的两只球同色”。则;P(B)。f(x)分布为0,x0P{X3},则;X的分布函数ex,x07、设X的概率F(x)。二、选择题,且0P(A)1,P(B)0,则有。1、设事件满足(A)(B)(D)()2、对于随机变量X、Y,若EXYEXEY,则。(A)X与Y独立(B)D(XY)DXDY(C)D(XY)DXDYDXY()与不独立3、设X~N(3,1),Y~N(2,1),且相互独立,则X2Y7~。(A)N(0,5)N(0,6)(B)N(0,3)(D)N(0,4)(C)4、设A和B是任(A)P(AB)P(A)意概率不为零的互斥事件,则结论正确的是。(B)A与不互斥B(C)P(AB)P(A)P(B)(D)A与B互斥0.4,则D(XY)=5、设DX25,DY9,。xy(A)22(B)8(C)14(D)28p1P{X2},均服从正态分布X~N(,22),Y~N(,32),记6、设和p2P{Y3},则对任何实数都有仅对的个别值有。;;对任何实数都有对任何实数都有;。7、某人射击中靶的概率为3/5,如果射击直到中靶为止,则射击次数为3的概率。()(3)3()(3)22555(2)235()(2)3C()558、设与()不独立9、设随机变量X的密度函数为独立同分布,记,,则必然。()不相关()相关()独立f(x)Cx3,0x10,其它则常数C=。341/41/310、设每次试验成功的概率为1/3,则在3次重复试验中恰有1次成功的概率为()1/27()26/27()4/9()。19/27三、解答题B1、在某城市中发行三种报纸A、B、C,经调查,订阅报的有50%,订阅报的有30%,订阅C报的有20%,同时订阅及B报的有10%,同时订阅及C报的有8%,同时订阅B及C报的有5%,同时订阅A、B、C报的有3%,试求下列事件的概率:(1)只订阅及B报;(2)恰好订阅两种报纸。2、甲、乙两人各自同时向敌机射击,已知甲击中敌机的概率为0.8,乙击中敌机的概率为0.5,求下列事件的概率:(1)敌机被击中;(2)甲击中乙击不中;(3)乙击中甲击不中。3、在电源电压不超过200,200~240和超过240伏的三种情况下,某种电子元件损坏的概率分别为0.1,0.001和0.2,假定电源电压X~N(220,252),试求:(1)该电子元件被损坏的概率;(2)电子元件被损坏时,电源电压在200~240伏的概率。(提示:(0.8)0.788)。4、设为总体的一个样本,且X的概率分布为P{Xk}(1p)k1p,k1,2,3,。为来自总体的一个样本观察值,求p的极大似然估计值。5、有朋友远方来访,他乘火车、轮船、汽车、飞机的概率分别为3/10、1/5、1/10、2/5,而乘火车、轮船、汽车、飞机迟到的概率分别为1/4、1/3、1/12、1/8。求:(1)此人来迟的概率;(2)若已知来迟了,6、已知某种型号的雷管在一定刺激下发火率为4/5,今独立重复地作刺激试验,直到发火为止,则消耗的雷管数的概率7、一袋中装有3个球,分别标有1、2、3,从这袋中任取一球,此人乘火车来的概率。分布。不放回袋中,再任取一球。用、分别表示第一次、第二次取得的球上的,试求:(1)随机向量(X,Y)的概率分布;(X,Y)(2)关于和关于的边缘概率分布;(3)和是否相互独立?为什么?8、设X,X,,X为的一个样本,12nX~f(x,)(1)x,0x10,其它其中1为未知参数,求的极大似然法估计。9、设的概率分布为0121/31/61/2求:(1)的分布函数;(2)、、。10、设有一箱同类产品是由三家工厂生产的,又知第一、二、三家工厂生产的产品分别有2%、4%、5%的次品,现从箱中任取一件产品,求:(1)次是品的概率;(2)若已知取到的次是品,它是第一家工厂生产的概率。其中1/2第是一家工厂生产的,其余两家各生产1/4,取到的11、设二维随机变量(X,Y)的概率分布为f(x,y)ey,0xy0,其它1)随机变量X的密度函数f(x);求:(X(2)概率P{XY1}。12、设的分布密度为,求:数学期望EX和方差DX。13、某工厂三个车间生产同一规格的产品,其产量依次占全厂总产量的25%、35%、40%,如果各车间生产产品的次品率依次为5%、4%、2%。现从待出厂的产品中随机地取一件,求:(1)取到的是次品的概率;(2)若已知取到的是次品,它是第一车间生产的概率。14、设相互独立随机变量X、Y的概率分布分别为12e,y0,1x32y(x)(y)20,其它;0,y0求:E(XY)和E(2X3Y)。215、设随机变量X的概率分布为X-1012p0.30.20.40.1k1)EX、DX;求:((2)Y2X1的概率分布;16、设随机变量的分布函数为F(x)a1Arctanx(x)求:(1)系数a;(2)X落在区间((3)随机变量X的概率密度。(提示:-1,1)中的概率;Arctanx为反正切函数)《概率论与数理统计》综合复习资料参考答案一、填空题1、答案:5/362、答案:3/143、答案:8/454、答案:0.75、答案:15/226、答案:3/2810/3619/3016/451/3665/6613/281ex,x01eF(x)7、答案:3;0,x0二、选择题题目12345678910C答案BCAAADCBB三、解答题1、解:(1)P(ABC)P(ABC)P(ABABC)P(AB)P(ABC)0.10.030.07(2)P(ABCABCABC)P(ABC)P(ABC)P(ABC))0.070.020.050.142、解:设事件表示:“甲击中敌机”;事件表示:“乙击中敌机”;事件表示:“敌机被击中”。则(1)P(C)P(AB)1P(AB)1P(AB)10.10.9(2)P(AB)P(A)P(B)0.8(10.5)0.4(3)P(AB)P(A)P(B)(10.8)0.50.13、解:设:“电源电压不超过200伏”;:“电源电压在200—240伏”;:“电源电压超过240伏”;:“电子元件被埙坏”。由于,所以由题设,,,所以由全概率公式由条件概率公式4、解:构造似然函数nnLppxpp(1p)()(,)x1iii1i1nxnip(1p)i1nnlnLnlnp(xn)ln(1p)ii1nxndlnLnii1dpp1p,解得pn/nx,因此的极大似然估计值为i令i1pˆn/nx。ii15、解:设事件表示:“此人来迟了”;事件A分别表示:i“此人乘火车、轮船、汽车、飞机来”(,4)。2分4A,且i,A、A、A、A两两互不相容1234则i1(1)P(A)4P(A)P(A|A)iii131111121110453101258531P(A)P(A|A)1044P(A)P(A|A)3(2)=111/58jjj16、解:的可能取值为1,2,。记表示“第次试验雷管发火”则表示“第次试验雷管不发火”从而得p1P{X1}P(A1)5414pP{X2}P(AA)P(A)P(A)5521212p3P{X3}P(A1A2A3)P(A1)P(A2)P(A3)(1)2455pP{Xk}P(A1A2Ak1Ak)(1)k14k55依次类推,得消耗的雷管数的概率分布为41P{Xk}()k1(k1,2,3,)557、解:(1)的取值为,由概率乘法公式可得同理可得此外事件,,都是不可能事件,所以,于是(,)的概率分布表为1021/6031231/61/601/61/61/6(2)关于的边缘概率分布123pi1/31/31/3关于Y的边缘概率分布Y123pj1/31/31/3(3)和不相互独立,由于PiPjP。ij8、解:设为观测值,则构造似然函数L()(1)n(x)nii1lnLnln(1)nlnxii1dlnLnd1nlnx0i令i1n解得的极大似然估计为ˆ1nlnxii19、解:(1);;。10、解:设事件表示:“取到的产品是次品”;事件A表示:“取到的产品是第家工厂生产的”i(则)。,且,两两互不相容,(1)由全概率公式得P(A)3P(A)P(A|A)iii112141513210041004100400(2)由贝叶斯公式得P(A)P(A|A)=113P(A)P(A|A)jjj11221004131340011、解:(1)时,=0;时,=故随机变量的密度函数=(2)11xxdx2x(2x)dx112、解:=0=于是13、解:设事件表示:“取到的产品是次品”;事件“取到的产品是第车间生产的”A表示:i(则)。,且,两两互斥,由全概率公式得P(A)3P(A)P(A|A)iii1255354402691001001001001001002000P(A)P(A|A)=113P(A)P(A|A)jjj12552569100100692000知EX312;DX11
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村买房怎样写协议合同
- 外贸合同协议模板
- 生产框架协议合同
- 协议保险合同
- 短期聘用合同简单协议书
- 学校厨房员工合同协议书
- 修建房子协议合同书模板
- 艺人培训协议合同
- 房屋装修翻新合同协议书
- 货物采购合同协议
- 档案档案管理基础知识试题及答案
- 2025-2030中国慢性腰痛治疗行业市场现状供需分析及投资评估规划分析研究报告
- 演出经纪人与文化经济试题
- pcb抄板合同范例
- 药浴疗法的基本原理操作规程及临床应用
- 2025年吉林工业职业技术学院单招职业倾向性测试题库完整
- 生态农业发展与绿色金融的融合路径
- 奶茶店应聘简历范本
- 附着龈重建在口腔种植修复中的应用探索
- 房屋建造流程过程
- 2025年教科新版七年级英语下册月考试卷
评论
0/150
提交评论