小学数学应用题与数学思维教学方法_第1页
小学数学应用题与数学思维教学方法_第2页
小学数学应用题与数学思维教学方法_第3页
小学数学应用题与数学思维教学方法_第4页
小学数学应用题与数学思维教学方法_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

千里之行,始于足下让知识带有温度。第2页/共2页精品文档推荐小学数学应用题与数学思维教学方法学校数学应用题与数学思维教学方法

应用题教学既是学校数学教学中的重点,又是重点。由于学校生的抽象概括力量较差,在解答应用题时很简单消失障碍和困难,需要老师多加指导。我整理了相关内容,盼望能关心到您。

学校数学应用题教学方法

一、影响学校生数学应用题解题水平的因素

通过多年的教学发觉,导致学校生数学应用题解题力量无法提高的因素有:

(一)文字理解力量差

应用题的特点是用语言、文字叙述日常生活、实际事情,一般由已知条件和问题两部分组成,解题的过程就是理解题目中表达的意思,并对所含数量关系进行分析整理,最终正确解答题目。然而同学的应用题解题成果易受数学应用题陈述不全都、语法、句子结构以及多余信息的影响。例如同学在解决比较问题中消失的主要错误为转换错误,在不全都问题中消失的错误比全都问题中消失的错误多。多余信息、增加一个额外的解题步骤、隐含条件都增加了学校生的解题困难。部分同学不能用自己的话正确地复述测试题的题意更无法提取已知条件、未知条件、隐含条件。

(二)问题分析力量不足

问题分析力量在解答应用题过程中发挥着很重要的作用,同学解答应用题错误率高的缘由主要是对问题的分析力量的不足。同学思维缺乏规律性,不能依据题意来明确解题思路,不会支配解题步骤。

(三)缺乏解题策略

部分同学在数学应用题解题策略上存在问题,表现在评价自己解决问题的力量、确定和选择适当的解题策略、对计算结果的检查等方面。同学在解题策略方面的确存在很大的问题,表现在思路不清楚,无法确定题意。

(四)计算力量和书写力量较差

通过长期的教学发觉一些同学在解答应用题时计算却常常消失错误,但列出的算式却是正确的,还有部分同学由于书写的不规范、不工整导致计算失误。

(五)学习爱好是解决应用题的前提

数学源于生产劳动,应用题更是数学问题在生活中的体现,创设肯定的情境呈现给同学。创设一幅生活场景,或用图表、文字叙述等形式呈现数量关系。通过这种教学可以让同学在熟识的生活背景中感知数学,激发学习数学应用题的爱好,进而增加学习的乐观性,这也有助于提高同学用所学数学学问解决实际问题的力量。

二、提高同学应用题解题力量的策略

学校数学应用题教学就是同学在老师的指导下将应用题的教学过程转变为分析综合、比较概括、抽象推理等思维方法的训练过程,以达到培育同学力量、智力的目的。下面结合自己多年的教学阅历,依据学校生解答应用题的一般步骤,针对每个环节中存在的问题,实行对应的教学策略,以提高同学数学应用题解题力量。

(一)培育同学的审题习惯

精确解答应用题的首要条件是细致地审题,弄明白题意。因此,在教学中要重视培育同学良好的审题习惯。解应用题时,可引导同学找出题所含的直接、间接条件,建立起问题与条件之间的联系,从而确定数量关系。审题时要求同学边读题边思索,分析问题中的已知量与未知量之间的关系,划线标出。

(二)教同学分析应用题的方法

传授解题过程中,很多同学不明白怎样解题,许多同学习惯于仿照例题和老师的解答方法,遇到练习过的类型能解答,换新类型就无从下手。究其缘由,同学没有把握正确的解题方法,许多同学可能无法理解题目的意思,难以表述出题目中的数量关系。因此,教给同学分析应用题的推理方法,借助于表格、情境图和漫画等方法分析应用题的数量关系,让同学明确解题思路至关重要。

(三)培育同学把握正确的解题步骤

应用题教学中培育良好的解题习惯,同时检查验算和写好答案的习惯至关重要,要留意引导同学按正确的解题步骤解答,让同学进行自我评价、总结,强化对的解题方法,找出错的缘由所在。列式计算只解决了“如何解答”的问题,“为何这样解答”的问题没有解决。因此,老师应教给同学检查验算的方法,最终进展成同学独立完成。

(四)关心同学联系生活,激发学习爱好

数学学问来源于生活实际,学习数学的目的是解决生活中的实际问题。爱好是学习的动力,激发同学解应用题的爱好,让同学在轻松的环境中解答应用题,可起到事半功倍的作用。《标准》在教学要求中增加了“使同学感受数学与现实生活的联系”,这不仅要求教学要敬重教材、明确教材内容中的学问要素;而且培育了“数同学活化”思想,要从同学熟识的生活情境和感爱好的事物动身,选取应用题选材,创设教学情景,把生活问题数学化,数学问题生活化。通过四周熟识的事物中学习数学和理解数学,使同学感受到数学的趣味和作用,使枯燥的数学问题变为活生生的生活现实。综上所述,在教学中,老师要不断探究和改进教学方法,依据数学应用题的特点教学,引导同学理解、把握数学应用题解题思路和方法,进而充分调动起学校生的学习爱好,激发同学的学习动机,最终达到提高同学分析现实问题、解决实际问题力量的目的。

学校数学教学方法总结

形象思维方法

形象思维方法是指人们用形象思维来熟悉、解决问题的方法。它的思维基础是详细形象,并从详细形象绽开来的思维过程。

形象思维的主要手段是实物、图形、表格和典型等形象材料。它的熟悉特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行乐观想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维力量。

1、实物演示法

利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思索、寻求解决问题的方法。

这种方法可以使数学内容形象化,数量关系详细化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为同学指明白思维方向。再如,在一个圆形(方形)水塘四周栽树问题,假如能进行一个实际操作,效果要好得多。

二年级数学教材中,“三个小伴侣见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的学问,在学校教学中,假如实物演示的方法,是很难达到预期的教学目标的。

特殊是一些数学概念,假如没有实物演示,学校生就不能真正把握。长方形的面积、长方体的熟悉、圆柱的体积等的学习,都依靠于实物演示作思维的基础。

所以,学校数学老师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。这样可以有效地提高课堂教学效率,提升同学的学习成果。

绩。

2、图示法

借助直观图形来确定思索方向,查找思路,求得解决问题的方法。

图示法直观牢靠,便于分析数形关系,不受规律推导限制,思路敏捷开阔,但图示依靠于人们对表象加工整理的牢靠性上,一旦图示与实际状况不相符,易使在此基础上的联想、想象消失谬误或走入误区,最终导致错误的结果。比如有的数学老师爱徒手画数学图形,难免造成不精确,使同学产生误会。

在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意同学也就明白了;有的题,画图则可以关心分析题意、启迪思路,作为其他解法的帮助手段。

例1.把一根木头锯成3段需要24分钟,锯成6段需要多少分钟?(图略)

思维方法是:图示法。

思维方向是:锯几次,每次用几分钟。

思路是:锯3段锯了几次,每次用几分钟,锯6段锯了几次,需要多少分钟。

例2.推断:等腰三角形中,点D是底边BC的中点,图甲的面积比图乙的面积大,图甲的周长比图乙的周长长。(图略)

思维方法:图示法。

思维方向:先比较面积,再比较周长。

思路:作条帮助线。图甲占的面积大,图乙所占面积小,所以“图甲的面积比图乙的面积大”是正确的。线段AD比曲线AD短,所以“图甲的周长比图乙的周长长”是错误的。

3、列表法

运用列出表格来分析思索、查找思路、求解问题的方法叫做列表法。列表法清楚明白,便于分析比较、提示规律,也有利于记忆。它的局限性在于求解范围小,适用题型狭窄,大多跟查找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位挨次等内容的教学大都采纳“列表法”。

用列表法解决传统数学问题:鸡兔同笼问题。制作三个表格:第一张表格是逐一举例法,依据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条这样逐一列举,直至查找到所求的答案;其次张表格是列举了几个以后发觉了只数与腿数的规律,从而削减了列举的次数;第三张表格是从中间开头列举,由于鸡与兔共20只,所以各取10只,接着依据实际的数据状况确定列举的方向。

4、探究法

根据肯定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法。我国闻名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是盼望自己是一个发觉者、讨论者、探究者,而在儿童的精神世界中,这种需要特殊剧烈。“学习要以探究为核心”,是新课程的基本理念之一。人们在难以把问题转化为简洁的、基本的、熟识的、典型的问题时,经常实行的一种好方法就是探究、尝试。

第一、探究方向要精确,爱好要高涨,切忌胡乱尝试或形式主义的探究。例如,教学“比例尺”时,老师创设“同学出题考老师”的教学情境,师:“现在我们考试好不好?”同学一听:很惊奇,正值同学怀疑之时,老师说:“今日转变过去的考试方法,由你们出题考老师,情愿吗?”同学听后很感爱好。老师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告知你们这两地之间的实际距离,信任吗?”于是同学纷纷上台度量、报数,老师都一个接一个地回答对应的实际距离。同学这时更感到惊奇,异口同声地说:“老师您快告知我们吧,您是怎样算的?”老师说:“其实呀,有一位好伴侣在暗中关心老师,你们知道它是谁吗?想熟悉它吗?”于是引出所要学习的内容“比例尺”。

其次、定向猜想,反复实践,在不断分析、调整中查找规律。

例3.找规律填数。

(1)1、4、、10、13、、19;

(2)2、8、18、32、、72、。

第三,独立探究与合作探究结合。独立,有自由的思维时空;合作,可以学问上互补,方法上相互借鉴,不时还能碰撞出才智的火花。

学校数学教学活动中,老师应尽量创设让同学去探究的情景,制造让同学去探究的机会,鼓舞有探究精神和习惯的同学。

5、观看法

通过大量详细事例,归纳发觉事物的一般规律的方法叫做观看法。巴浦洛夫说:应当先学会观看,不学会观看永久当不了科学家.”

学校数学“观看”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系。

如:观看一组算式:254=425,6211=1162,1006=6100归纳出乘法交换率:在乘法算式里,交换两个因数的位置,积不变。

“观看”的要求:

第一、观看要细致、精确。

例4.找出下列各题错在哪里,并改正。

(1)2516=25(44)=(254)(254);

(2)1836+1864=(18+18)(36+64)

例5.直接写出下列各题的得数:

(1)3.6+6.4(2)3.6+6.04

(3)125570.04(4)(351-37-13)5

其次、科学观看。科学观看渗透了更多的理性因素,它是有目的,有方案地察看讨论对象。比如,在教学长方体的熟悉时,要做到“有序”观看:(1)面外形、个数、面与面之间的关系;(2)棱棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);(3)顶点顶点的形成、个数,熟悉顶点的一个重要作用是引出长方体长、宽、高的概念。

第三,观看必定与思索结合。

例6

这是一年级下学期的一道思索题,假如只观看不思索,这道题目让干什么就不知道。

6、典型法

针对题目去联想已经解过的典型问题的解题规律,从而找出解题思路的方法叫做典型法。典型是相对于普遍而言的。解决数学问题,有些需要用一般方法,有些则需要用特别(典型)方法。比如,归一、倍比和归终于法、行程、工程、消同求异、平均数等。

运用典型法必需留意:

(1)要把握典型材料的关键及规律。

例7.已知爸爸比儿子大30岁,爸爸今年的年龄正好是儿子的7倍。爸爸、儿子今年分别是多少岁?关键点在:爸爸比儿子大30岁,爸爸的年龄比儿子多几倍。典型题都有典型解法,要想真正学好数学,即要理解和把握一般思路和解法,还要学会典型解法。

(2)熟识典型材料,并能灵敏地联想到所适用的典型,从而确定所需要的解题方法。

例8.见到“某城市有一条公共汽车线路,长16500米,平均每隔500米设一个车站。这条线路需要设多少个车站?”这样题目,就应当联想到上面所讲到的“锯木头用多少分钟”的典型问题。

(3)典型和技巧相联系。

例9.甲乙两个工程队共有82人,假如从乙队调8人到甲队,两队人数正好相等。甲乙两队原来各有多少人?这题目的技巧:调前、调后两队总人数没变。先算调后各队人数,再算原来各队人数。

7、放缩法

通过对被讨论对象的放缩估量来解决问题的方法叫做放缩法。放缩法敏捷、奇妙,但有赖于学问的拓展力量及其想象力量。

例16.求12和9的最小公倍数。

求两个数的最小公倍数一般的方法是“短除式”方法,它是依据这两个数的质因数状况来求出它们的最小公倍数的。但也有两个典型方法:一是“假如两个数是互质数,那么这两个数的最小公倍数就是它们的乘积”;二是“假如大数是小数的倍数,那么这两个数的最小公倍数就是大数”。现在我们依据典型方法二,进行扩展运用,放大“大数”来求12和9的最小公倍数。

12不是9的倍数,就把它放大2倍,得24,仍旧不是9的倍数,放大3倍,得36,36是9的倍数,那么,12和9的最小公倍数就是36。这种方法的关键点在于,假如大数不是小数的倍数,就把大数翻倍,但肯定从2倍开头,假如一下子扩大6倍,得数是它们的公倍数,而不是最小的了。

例17.期末考试,小刚的语文成果和英语成果的和是197分;语文和数学成果加起来是199分;数学和英语成果加起来是196分。想一想,小刚的哪科成果最高?你能算出小刚的各科成果吗?

思路一:“放大”。通过观看发觉,语、数、外三科成果在题目中各消失两次,我们求197+199+196的和,这个和是“语数外成果的2倍”,除以2得三科成果之和,再减去任意两科的成果,就得到第三科的成果。

思路二:“缩小”。我们用语数成果的和减去语外的成果,199-197=2(分),这是数学减英语成果的差。数学和英语的和是196分,再求数学的分数就不难了。

放缩法有时运用在估算和验算上。

例18.检验下列计算结果是否正确?

(1)18.76.9=137.3;(2)174856.6=3609.

对于(1)用总体估量,放大至197=133,估量得数要小于133,所以本题结果错误。对于(2)用最高位估量,把17看作18,把6.6看作6,186=3,明显答数的最高位不会是3,故本题结果也不正确。

例19.把鸡和兔放在一起,共有48个头,114只足,问鸡、兔各有几只。

这是一道鸡兔同笼的典型问题,我们也用放缩法,不妨把鸡和兔的足数缩小2倍,那么,鸡的足数和它的头数一样,而兔的足数是它的只数的2倍。所以,总的足数缩小2倍后,鸡和兔的总足数与它们的总只数相差数就是兔的只数。

8、验证法

你的结果正确吗?不能只等老师的评判,重要的是自己心里要清晰,对自己的学习有一个清晰的评价,这是优秀同学必备的学习品质。

验证法应用范围比较广泛,是需要娴熟把握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证力量和逐步养成严谨细致的好习惯。

(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。

(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。

(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有同学这样做:3148(套)

根据“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。

(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出宏大的发觉。”“猜”也是解决问题的一种重要策略。可以开拓同学的思维、激发“我要学”的愿望。为了避开瞎猜,肯定学会验证。验证猜想结果是否正确,是否符合要求。如不符合要求,准时调整猜想,直到解决问题。

二、抽象思维方法

运用概念、推断、推理来反映现实的思维过程,叫抽象思维,也叫规律思维。

抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采纳形式思维的方式;客观存在也有其不断进展变化的一面,我们可以采纳辩证思维的方式。形式思维是辩证思维的基础。

形式思维力量:分析、综合、比较、抽象、概括、推断、推理。

辩证思维力量:联系、进展变化、对立统一律、质量互变律、否定之否定律。

学校数学要培育同学初步的抽象思维力量,重点突出在:(1)思维品质上,应当具备思维的灵敏性、敏捷性、联系性和制造性。(2)思维方法上,应当学会有条有理,有根有据地思索。(3)思维要求上,思路清楚,因果分明,言必有据,推理严密。(4)思维训练上,应当要求:正确地运用概念,恰当地下推断,合乎规律地推理。

9、对比法

如何正确地理解和运用数学概念?学校数学常用的方法就是对比法。依据数学题意,对比概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学学问的理解、记忆、辨识、再现、迁移来解题的方法叫做对比法。

这个方法的思维意义就在于,训练同学对数学学问的正确理解、坚固记忆、精确辨识。

例20.个连续自然数的和是18,则这三个自然数从小到大分别是多少?

对比自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

例21.推断:能被2除尽的数肯定是偶数。

这里要对比“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确推断。

10、公式法

运用定律、公式、规章、法则来解决问题的方法。它体现的是由一般到特别的演绎思维。公式法简便、有效,也是学校生学习数学必需学会和把握的一种方法。但肯定要让同学对公式、定律、规章、法则有一个正确而深刻的理解,并能精确运用。

例22.计算5937+1259+59

5937+1259+59

=59(37+12+1)运用乘法安排律

=5950运用加法计算法则

=(60-1)50运用数的组成规章

=6050-150运用乘法安排律

=3000-50运用乘法计算法则

=2950运用减法计算法则

11.比较法

通过对比数学条件及问题的异同点,讨论产生异同点的缘由,从而发觉解决问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论