




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-
.z
ArchitectureStructure
Wehaveandthearchitectsmustdealwiththespatialaspectofactivity,physical,andsymbolicneedsinsuchawaythatoverallperformanceintegrityisassured.Hence,heorshewellwantstothinkofevolvingabuildingenvironmentasatotalsystemofinteractingandspaceformingsubsystems.Isrepresentsaple*challenge,andtomeetitthearchitectwillneedahierarchicdesignprocessthatprovidesatleastthreelevelsoffeedbackthinking:schematic,preliminary,andfinal.
Suchahierarchyisnecessaryifheorsheistoavoidbeingconfused,atconceptualstagesofdesignthinking,bythemyriaddetailissuesthatcandistractattentionfrommorebasicconsiderations.Infact,wecansaythatanarchitect’sabilitytodistinguishthemorebasicformthemoredetailedissuesisessentialtohissuccessasadesigner.
Theobjectoftheschematicfeedbacklevelistogenerateandevaluateoverallsite-plan,activity-interaction,andbuilding-configurationoptions.Todosothearchitectmustbeabletofocusontheinteractionofthebasicattributesofthesiteconte*t,thespatialorganization,andthesymbolismasdeterminantsofphysicalform.Thismeansthat,inschematicterms,thearchitectmayfirstconceiveandmodelabuildingdesignasanorganizationalabstractionofessentialperformance-spaceinteractions.Thenheorshemaye*ploretheoverallspace-formimplicationsoftheabstraction.Asanactualbuildingconfigurationoptionbeginstoemerge,itwillbemodifiedtoincludeconsiderationforbasicsiteconditions.
Attheschematicstage,itwouldalsobehelpfulifthedesignercouldvisualizehisorheroptionsforachievingoverallstructuralintegrityandconsidertheconstructivefeasibilityandeconomicofhisorherscheme.Butthiswillrequirethatthearchitectand/oraconsultantbeabletoconceptualizetotal-systemstructuraloptionsintermsofelementaldetail.Suchoverallthinkingcanbeeasilyfedbacktoimprovethespace-formscheme.
Atthepreliminarylevel,thearchitect’semphasiswillshifttotheelaborationofhisorhermorepromisingschematicdesignoptions.Herethearchitect’sstructuralneedswillshifttoappro*imatedesignofspecificsubsystemoptions.Atthisstagethetotalstructuralschemeisdevelopedtoamiddlelevelofspecificitybyfocusingonidentificationanddesignofmajorsubsystemstothee*tentthattheirkeygeometric,ponent,andinteractivepropertiesareestablished.Basicsubsysteminteractionanddesignconflictscanthusbeidentifiedandresolvedintheconte*toftotal-systemobjectives.Consultantscanplayasignificantpartinthiseffort;thesepreliminary-leveldecisionsmayalsoresultinfeedbackthatcallsforrefinementorevenmajorchangeinschematicconcepts.
Whenthedesignerandtheclientaresatisfiedwiththefeasibilityofadesignproposalatthepreliminarylevel,itmeansthatthebasicproblemsofoveralldesignaresolvedanddetailsarenotlikelytoproducemajorchange.Thefocusshiftsagain,andthedesignprocessmovesintothefinallevel.Atthisstagetheemphasiswillbeonthedetaileddevelopmentofallsubsystemspecifics.Heretheroleofspecialistsfromvariousfields,includingstructuralengineering,ismuchlarger,sincealldetailofthepreliminarydesignmustbeworkedout.DecisionsmadeatthislevelmayproducefeedbackintoLevelIIthatwillresultinchanges.However,ifLevelsIandIIarehandledwithinsight,therelationshipbetweentheoveralldecisions,madeattheschematicandpreliminarylevels,andthespecificsofthefinallevelshouldbesuchthatgrossredesignisnotinquestion,Rather,theentireprocessshouldbeoneofmovinginanevolutionaryfashionfromcreationandrefinement(ormodification)ofthemoregeneralpropertiesofatotal-systemdesignconcept,tothefleshingoutofrequisiteelementsanddetails.
Tosummarize:AtLevelI,thearchitectmustfirstestablish,inconceptualterms,theoverallspace-formfeasibilityofbasicschematicoptions.Atthisstage,collaborationwithspecialistscanbehelpful,butonlyifintheformofoverallthinking.AtLevelII,thearchitectmustbeabletoidentifythemajorsubsystemrequirementsimpliedbytheschemeandsubstantialtheirinteractivefeasibilitybyappro*imatingkeyponentproperties.Thatis,thepropertiesofmajorsubsystemsneedbeworkedoutonlyinsufficientdepthtoverytheinherentpatibilityoftheirbasicform-relatedandbehavioralinteraction.ThiswillmeanasomewhatmorespecificformofcollaborationwithspecialiststhenthatinlevelI.AtlevelIII,thearchitectandthespecificformofcollaborationwithspecialiststhenthatprovidingforalloftheelementaldesignspecificsrequiredtoproducebiddableconstructiondocuments.
OfcoursethissuccessesfromthedevelopmentoftheStructuralMaterial.
ReinforcedConcrete
Plainconcreteisformedfromahardenedmi*tureofcement,water,fineaggregate,coarseaggregate(crushedstoneorgravel),air,andoftenotheradmi*tures.Theplasticmi*isplacedandconsolidatedintheformwork,thencuredtofacilitatetheaccelerationofthechemicalhydrationreactionlfthecement/watermi*,resultinginhardenedconcrete.Thefinishedproducthashighpressivestrength,andlowresistancetotension,suchthatitstensilestrengthisappro*imatelyonetenthlfitspressivestrength.Consequently,tensileandshearreinforcementinthetensileregionsofsectionshastobeprovidedtopensatefortheweaktensionregionsinthereinforcedconcreteelement.
tisthisdeviationinthepositionofareinforcesconcretesectionfromthehomogeneityofstandardwoodorsteelsectionsthatrequiresamodifiedapproachtothebasicprinciplesofstructuraldesign.Thetwoponentsoftheheterogeneousreinforcedconcretesectionaretobesoarrangedandproportionedthatoptimaluseismadeofthematerialsinvolved.Thisispossiblebecauseconcretecaneasilybegivenanydesiredshapebyplacingandpactingthewetmi*tureoftheconstituentingredientsareproperlyproportioned,thefinishedproductbeesstrong,durable,and,inbinationwiththereinforcingbars,adaptableforuseasmainmembersofanystructuralsystem.
Thetechniquesnecessaryforplacingconcretedependonthetypeofmembertobecast:thatis,whetheritisacolumn,abean,awall,aslab,afoundation.amasscolumns,orane*tensionofpreviouslyplacedandhardenedconcrete.Forbeams,columns,andwalls,theformsshouldbewelloiledaftercleaningthem,andthereinforcementshouldbeclearedofrustandotherharmfulmaterials.Infoundations,theearthshouldbepactedandthoroughlymoistenedtoabout6in.indepthtoavoidabsorptionofthemoisturepresentinthewetconcrete.Concreteshouldalwaysbeplacedinhorizontallayerswhicharepactedbymeansofhighfrequencypower-drivenvibratorsofeithertheimmersionore*ternaltype,asthecaserequires,unlessitisplacedbypumping.Itmustbekeptinmind,however,thatovervibrationcanbeharmfulsinceitcouldcausesegregationoftheaggregateandbleedingoftheconcrete.
Hydrationofthecementtakesplaceinthepresenceofmoistureattemperaturesabove50°F.Itisnecessarytomaintainsuchaconditioninorderthatthechemicalhydrationreactioncantakeplace.Ifdryingistoorapid,surfacecrackingtakesplace.Thiswouldresultinreductionofconcretestrengthduetocrackingaswellasthefailuretoattainfullchemicalhydration.
Itisclearthatalargenumberofparametershavetobedealtwithinproportioningareinforcedconcreteelement,suchasgeometricalwidth,depth,areaofreinforcement,steelstrain,concretestrain,steelstress,andsoon.Consequently,trialandadjustmentisnecessaryinthechoiceofconcretesections,withassumptionsbasedonconditionsatsite,availabilityoftheconstituentmaterials,particulardemandsoftheowners,architecturalandheadroomrequirements,theapplicablecodes,andenvironmentalreinforcedconcreteisoftenasite-constructedposite,incontrasttothestandardmill-fabricatedbeamandcolumnsectionsinsteelstructures.Atrialsectionhastobechosenforeachcriticallocationinastructuralsystem.
Thetrialsectionhastobeanalyzedtodetermineifitsnominalresistingstrengthisadequatetocarrytheappliedfactoredload.Sincemorethanonetrialisoftennecessarytoarriveattherequiredsection,thefirstdesigninputstepgeneratesintoaseriesoftrial-and-adjustmentanalyses.
Thetrial-and–adjustmentproceduresforthechoiceofaconcretesectionleadtotheconvergenceofanalysisanddesign.Henceeverydesignisananalysisonceatrialsectionischosen.Theavailabilityofhandbooks,charts,andpersonalputersandprogramssupportsthisapproachasamoreefficient,pact,andspeedyinstructionalmethodparedwiththetraditionalapproachoftreatingtheanalysisofreinforcedconcreteseparatelyfrompuredesign.
Earthwork
Becauseearthmovingmethodsandcostschangemorequicklythanthoseinanyotherbranchofcivilengineering,thisisafieldwheretherearerealopportunitiesfortheenthusiast.In1935mostofthemethodsnowinuseforcarryingande*cavatingearthwithrubber-tyredequipmentdidnote*ist.Mostearthwasmovedbynarrowrailtrack,nowrelativelyrare,andthemainmethodsofe*cavation,withfaceshovel,backacter,ordraglineorgrab,thoughtheyarestillwidelyusedareonlyafewofthemanycurrentmethods.Tokeephisknowledgeofearthmovingequipmentuptodateanengineermustthereforespendtinestudyingmodernmachines.Generallytheonlyreliableup-to-dateinformationone*cavators,loadersandtransportisobtainablefromthemakers.
Earthworksorearthmovingmeanscuttingintogroundwhereitssurfaceistoohigh(cuts),anddumpingtheearthinotherplaceswherethesurfaceistoolow(fills).Toreduceearthworkcosts,thevolumeofthefillsshouldbeequaltothevolumeofthecutsandwhereverpossiblethecutsshouldbeplacedneartofillsofequalvolumesoastoreducetransportanddoublehandlingofthefill.Thisworkofearthworkdesignfallsontheengineerwholaysouttheroadsinceitisthelayoutoftheearthworkmorethananythingelsewhichdecidesitscheapness.Fromtheavailablemapsahdlevels,theengineeringmusttrytoreachasmanydecisionsaspossibleinthedrawingofficebydrawingcrosssectionsoftheearthwork.Onthesitewhenfurtherinformationbeesavailablehecanmakechangesinhissectionsandlayout,butthedrawingofficeworkwillnothavebeenlost.Itwillhavehelpedhimtoreachthebestsolutionintheshortesttime.
Thecheapestwayofmovingearthistotakeitdirectlyoutofthecutanddropitasfillwiththesamemachine.Thisisnotalwayspossible,butwhenitcanbedoneitisideal,beingbothquickandcheap.Draglines,bulldozersandfaceshovelsandothis.Thelargestradiusisobtainedwiththedragline,andthelargesttonnageofearthismovedbythebulldozer,thoughonlyovershortdistances.Thedisadvantagesofthedraglinearethatitmustdigbelowitself,itcannotdigwithforceintopactedmaterial,itcannotdigonsteepslopes,anditsdumpinganddiggingarenotaccurate.
Faceshovelsarebetweenbulldozersanddraglines,havingalargerradiusofactionthanbulldozersbutlessthandraglines.Theyareabletodigintoaverticalclifffaceinawaywhichwouldbedangeroustorabulldozeroperatorandimpossibleforadragline.Eachpieceofequipmentshouldbeleveloftheirtracksandfordeepdigsinpactmaterialabackacterismostuseful,butitsdumpingradiusisconsiderablylessthanthatofthesameescavatorfittedwithafaceshovel.
Rubber-tyredbowlscrapersareindispensableforfairlyleveldiggingwherethedistanceoftransportistoomuchtoradraglineorfaceshovel.Theycandigthematerialdeeply(butonlybelowthemselves)toafairlyflatsurface,carryithundredsofmetersifneedbe,thendropitandlevelitroughlyduringthedumping.Forharddiggingitisoftenfoundeconomicaltokeepapushertractor(wheeledortracked)onthediggingsite,topusheachscraperasitreturnstodig.Assoonasthescraperisfull,thepushertractorreturnstothebeginningofthedigtohelpthenestscraper.
Bowlscrapersareoftene*tremelypowerfulmachines;manymakersbuildscrapersof8cubicmetersstruckcapacity,whichcarry10m³heaped.Thelargestself-propelledscrapersareof19m³struckcapacity(25m³heaped)andtheyaredrivenbyatractorengineof430horse-powers.
Dumpersareprobablythemonestrubber-tyredtransportsincetheycanalsoconvenientlybeusedforcarryingconcreteorotherbuildingmaterials.Dumpershavetheearthcontaineroverthefronta*leonlargerubber-tyredwheels,andthecontainertipsforwardsonmosttypes,thoughinarticulateddumpersthedirectionoftipcanbewidelyvaried.Thesmallestdumpershaveacapacityofabout0.5m³,andthelargeststandardtypesareofabout4.5m³.Specialtypesincludetheself-loadingdumperofupto4m³andthearticulatedtypeofabout0.5m³.Thedistinctionbetweendumpersanddumptrucksmustberemembered.dumperstipforwardsandthedriversitsbehindtheload.Dumptrucksareheavy,strengthenedtippinglorries,thedrivertravelsinfrontlftheloadandtheloadisdumpedbehindhim,sotheyaresometimescalledrear-dumptrucks.
SafetyofStructures
Theprincipalscopeofspecificationsistoprovidegeneralprinciplesandputationalmethodsinordertoverifysafetyofstructures.The“safetyfactor〞,whichaccordingtomoderntrendsisindependentofthenatureandbinationofthematerialsused,canusuallybedefinedastheratiobetweentheconditions.Thisratioisalsoproportionaltotheinverseoftheprobability(risk)offailureofthestructure.
Failurehastobeconsiderednotonlyasoverallcollapseofthestructurebutalsoasun-serviceabilityor,accordingtoamoreprecise.mondefinition.Asthereachingofa“limitstate〞whichcausestheconstructionnottoacplishthetaskitwasdesignedfor.Therearetwocategoriesoflimitstate:
Ultimatelimitsate,whichcorrespondstothehighestvalueoftheload-bearingcapacity.E*amplesincludelocalbucklingorglobalinstabilityofthestructure;failureofsomesectionsandsubsequenttransformationofthestructureintoamechanism;failurebyfatigue;elasticorplasticdeformationorcreepthatcauseasubstantialchangeofthegeometryofthestructure;andsensitivityofthestructuretoalternatingloads,tofireandtoe*plosions.
Servicelimitstates,whicharefunctionsoftheuseanddurabilityofthestructure.E*amplesincludee*cessivedeformationsanddisplacementswithoutinstability;earlyore*cessivecracks;largevibrations;andcorrosion.
putationalmethodsusedtoverifystructureswithrespecttothedifferentsafetyconditionscanbeseparatedinto:
(1)Deterministicmethods,inwhichthemainparametersareconsideredasnonrandomparameters.
(2)Probabilisticmethods,inwhichthemainparametersareconsideredasrandomparameters.
Alternatively,withrespecttothedifferentuseoffactorsofsafety,putationalmethodscanbeseparatedinto:
Allowablestressmethod,inwhichthestressesputedunderma*imumloadsareparedwiththestrengthofthematerialreducedbygivensafetyfactors.(2)Limitstatesmethod,inwhichthestructuremaybeproportionedonthebasisofitsma*imumstrength.Thisstrength,asdeterminedbyrationalanalysis,shallnotbelessthanthatrequiredtosupportafactoredloadequaltothesumofthefactoredliveloadanddeadload(ultimatestate).
Thestressescorrespondingtoworking(service)conditionswithun-factoredliveanddeadloadsareparedwithprescribedvalues(servicelimitstate).Fromthefourpossiblebinationsofthefirsttwoandsecondtwomethods,wecanobtainsomeusefulputationalmethods.Generally,twobinationsprevail:
deterministicmethods,whichmakeuseofallowablestresses.
Probabilisticmethods,whichmakeuseoflimitstates.
Themainadvantageofprobabilisticapproachesisthat,atleastintheory,itispossibletoscientificallytakeintoaccountallrandomfactorsofsafety,babilisticapproachesdependupon:
(1)Randomdistributionofstrengthofmaterialswithrespecttotheconditionsoffabricationanderection(scatterofthevaluesofmechanicalpropertiesthroughoutthestructure);
(2)Uncertaintyofthegeometryofthecross-sectionsandofthestructure(faultsandimperfectionsduetofabricationanderection
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年高中物理第七章5探究弹性势能的表达式练习含解析新人教版必修2
- 2024-2025学年高中生物第4章第2节生物膜的流动镶嵌模型课时精练含解析新人教版必修1
- 2024-2025学年高中数学第3章概率3.1.1随机现象3.1.2事件与基本事件空间学案新人教B版必修3
- 2025年保湿面膜巾行业深度研究分析报告
- 中国水稻插秧机行业市场全景监测及投资前景展望报告
- 温州环境监测设备项目可行性研究报告
- 环保设施行业发展前景预测及投资战略研究报告
- 2025年冲板式定量给料秤行业深度研究分析报告
- 螺旋形节能灯管项目可行性研究报告
- 2025年中国旅行社数量及营业收入情况分析,国内旅行社竞争日趋白热化「图
- 2025年中国远洋海运集团限公司中石化中海船舶燃料供应限公司招聘26人高频重点模拟试卷提升(共500题附带答案详解)
- 2025年春季学期各周国旗下讲话安排表+2024-2025学年度第二学期主题班会安排表
- 汽车电脑故障解码器项目可行性研究报告评审方案设计2025年发改委标准
- 实验室生物安全培训
- 《幼儿教育政策与法规》教案-单元1 幼儿教育政策与法规
- 【语文】第23课《“蛟龙”探海》课件 2024-2025学年统编版语文七年级下册
- 药品专业知识培训考试试题5
- 五年级下册劳动《日常收纳》课件
- 第28课改革开放和社会主义现代化建设的巨大成就 课件-高一统编版(2019)必修中外历史纲要上册
- 2024年中国游戏产业报告
- 宁波北仑区教育局招聘事业编制教师笔试真题2023
评论
0/150
提交评论